English, asked by iniyavan82, 2 months ago

decrease due to falling stock prices. mason is studying the change in the amount of money in two accounts, a and b, over time.
the amount f(x), in dollars, in account a after x years is represented by the function below:
f(x) = 10,125(1.83)x
part a: is the amount of money in account a increasing or decreasing and by what percentage per year?
justify your answer. (5 points)

part b: the table below shows the amount g(r), in dollars, of money in account b after r years.
r (number of years) 1 2 3 4 g(r) (amount in dollars) 9,638 18,794.10 36,648.50 71,464.58

which account recorded a greater percentage change in amount of money over the previous year?

justify your answer.​

Answers

Answered by JohnRobinson
1

May This Answer Helpz You Mate!

Question

decrease due to falling stock prices. mason is studying the change in the amount of money in two accounts, a and b, over time.

the amount f(x), in dollars, in account a after x years is represented by the function below:

f(x) = 10,125(1.83)x

part a: is the amount of money in account a increasing or decreasing and by what percentage per year?

justify your answer. (5 points)

part b: the table below shows the amount g(r), in dollars, of money in account b after r years.

r (number of years) 1 2 3 4 g(r) (amount in dollars) 9,638 18,794.10 36,648.50 71,464.58

which account recorded a greater percentage change in amount of money over the previous year?

justify your answer.

Answer

Account A: Decreasing at 8 % per year

Account B: Decreasing at 10.00 % per year

The amount f(x), in dollars, in account A after x years is represented by the function below:

f(x) = 10,125(1.83)x

Account B shows the greater percentage

change

Step-by-step explanation:

Part A: Percent change from exponential

formula

f(x) = 9628(0.92)*

The general formula for an exponential

function is

y = ab^x, where

b = the base of the exponential function.

if b < 1, we have an exponential decay

function.

f(x) decreases as x increases.

Account A is decreasing each year.

We can rewrite the formula for an

exponential decay function as:

y= a(1 – b)”, where

1- b = the decay factor

b = the percent change in decimal

form

If we compare the two formulas, we find

0.92 = 1- b

b = 1 - 0.92 = 0.08 = 8 %

The account is decreasing at an annual rate of 8%. The account is decreasing at an annual rate of 10.00%.

Account B recorded a greater percentage change in the amount of money over the previous year.

Answered by Hauaisjsj
2

May This Answer Helpz You Mate!

Question

decrease due to falling stock prices. mason is studying the change in the amount of money in two accounts, a and b, over time.

the amount f(x), in dollars, in account a after x years is represented by the function below:

f(x) = 10,125(1.83)x

part a: is the amount of money in account a increasing or decreasing and by what percentage per year?

justify your answer. (5 points)

part b: the table below shows the amount g(r), in dollars, of money in account b after r years.

r (number of years) 1 2 3 4 g(r) (amount in dollars) 9,638 18,794.10 36,648.50 71,464.58

which account recorded a greater percentage change in amount of money over the previous year?

justify your answer.

Answer

Account A: Decreasing at 8 % per year

Account B: Decreasing at 10.00 % per year

The amount f(x), in dollars, in account A after x years is represented by the function below:

f(x) = 10,125(1.83)x

Account B shows the greater percentage

change

Step-by-step explanation:

Part A: Percent change from exponential

formula

f(x) = 9628(0.92)*

The general formula for an exponential

function is

y = ab^x, where

b = the base of the exponential function.

if b < 1, we have an exponential decay

function.

f(x) decreases as x increases.

Account A is decreasing each year.

We can rewrite the formula for an

exponential decay function as:

y= a(1 – b)”, where

1- b = the decay factor

b = the percent change in decimal

form

If we compare the two formulas, we find

0.92 = 1- b

b = 1 - 0.92 = 0.08 = 8 %

The account is decreasing at an annual rate of 8%. The account is decreasing at an annual rate of 10.00%.

Account B recorded a greater percentage change in the amount of money over the previous year.

Similar questions