Deduce expression for angular width of central maximum
Answers
Answered by
0
on the either side of the central maxima, there are first secondary minimas.
I hope it will help you
Answered by
0
d \sin \theta = n \lambdadsinθ=nλ
n = 1, we have
d \sin \theta = \lambdadsinθ=λ
If angle is small, then \sin \theta = \thetasinθ=θ
d \theta = \lambdadθ=λ
Half angular width \theta = \frac {\lambda}{d}θ=
d
λ
Full angular width 2 \theta = 2 \frac {\lambda}{d}2 θ=2
d
λ
\omega' = \frac {2 \lambda}{d}ω
′
=
d
2λ
\frac {\lambda '}{\lambda} = \frac { \omega '} {\omega} \Rightarrow \lambda ' = \lambda ' \frac { \omega '} {omega}
λ
λ
′
=
ω
ω
′
⇒λ
′
=λ
′
omega
ω
′
\lambda ' = 6000 \times 0.7 = 4200 \mathring{A}λ
′
=6000×0.7=4200
A
˚
Similar questions