Science, asked by sraj56276, 1 year ago

Define astronomical unit and parsec.

Answers

Answered by Anonymous
11
 \textsf{\Large{\underline {Astronomical Unit ( A. U.) }}} : It is the average distance between the sun and the earth.

⚫ It is used to measure distances of planets.

 \boxed{\mathsf{1\:AU\:=\:1.496 *{10}^{11}m}}

 \textsf{\Large{\underline {Parallactic Seconds ( Parsec) }}} : It is the distance at which an arc of length 1 Astronomical Unit subtends an angle of 1 second.

 \textsf{\underline {Proof}} :

Angle =  \mathsf{\dfrac{l} {r}}

Where l = Length of arc.

r = Radius

 \mathsf{r\:=\:{\dfrac{l} {\theta}}} =  \mathsf{\dfrac{1\:AU}{1"}}

[ 1" = 1 second ]

1 Parsec =  \mathsf{\dfrac{1.496*{10}^{11}}{\dfrac{\pi}{\:3600*180°}}}

 \boxed{\mathsf {1\: Parsec \:=\:3.08*{10}^{16}m}}

⚫Parsec is the  \tt{\underline {largest \:unit\:of\:distance.}}
Attachments:
Answered by Anonymous
1

Explanation:

Astronomical Unit ( A. U.)

: It is the average distance between the sun and the earth.

⚫ It is used to measure distances of planets.

\boxed{\mathsf{1\:AU\:=\:1.496 *{10}^{11}m}}

1AU=1.496∗10

11

m

\textsf{\Large{\underline {Parallactic Seconds ( Parsec) }}}

Parallactic Seconds ( Parsec)

: It is the distance at which an arc of length 1 Astronomical Unit subtends an angle of 1 second.

\textsf{\underline {Proof}}

Proof

:

Angle = \mathsf{\dfrac{l} {r}}

r

l

Where l = Length of arc.

r = Radius

\mathsf{r\:=\:{\dfrac{l} {\theta}}} r=

θ

l

= \mathsf{\dfrac{1\:AU}{1"}}

1"

1AU

[ 1" = 1 second ]

1 Parsec = \mathsf{\dfrac{1.496*{10}^{11}}{\dfrac{\pi}{\:3600*180°}}}

3600∗180°

π

1.496∗10

11

\boxed{\mathsf {1\: Parsec \:=\:3.08*{10}^{16}m}}

1Parsec=3.08∗10

16

m

⚫Parsec is the \tt{\underline {largest \:unit\:of\:distance.}}

largestunitofdistance.

Similar questions