define Find the roots of the quadratic equation √3x² - 2x -√3-0
Answers
Answer:
x = √3 or -1/√3
Step-by-step explanation:
√3 x² - 2x - √3 = 0
√3 x² - 3x + 1x - √3 = 0
√3 x (x - √3) + 1 (x - √3)
(√3 x + 1)(x - √3)
x = √3 or -1/√3
Step-by-step explanation:
Given :-
√3x² - 2x -√3 = 0
To find:-
Find the roots ?
Solution:-
Factorization method :-
Given equation is √3x² - 2x -√3= 0
=> √3 x² -3x+x -√3 = 0
=> √3x(x-√3) +1(x-√3) = 0
=> (x-√3)(√3x+1) = 0
=> x-√3 = 0 or √3x+1 = 0
=> x = √3 or √3x = -1
=> x = √3 or x = -1/√3
Roots are √3 and -1/√3
Completing the square method :-
Given equation is √3x² - 2x -√3= 0
On dividing by √3 both sides then
=> x²-(2/√3)x-1 = 0
=> x²-2(x)(1/√3)-1 = 0
=> x²-2(x)(1/√3) = 1
On adding (1/√3)² both sides then
=> x²-2(x)(1/√3)+(1/√3)² = 1+(1/√3)²
=> [x-(1/√3)]² = 1+(1/3)
=> [x-(1/√3)]² =(3+1)/3
=> [x-(1/√3)]² = 4/3
=> x-(1/√3) =±√(4/3)
=> x-(1/√3) =±2/√3
=> x = (±2/√3)+(1/√3)
=> x = (1/√3)+(2/√3) or (1/√3)-(2/√3)
=>x = (1+2)/√3 or (1-2)/√3
=> x = 3/√3 or -1/√3
=> x = (√3×√3)/√3 or -1/√3
=> x = √3 or -1/√3
Roots are √3 and -1/√3
Formula method:-
Given equation is √3x² - 2x -√3= 0
On Comparing this with the standard quadratic equation ax²+bx+c = 0
a =√3
b = -2
c = -√3
Quadratic formula x = [-b±√(b²-4ac)]/2a
=> x = [-(-2)±√{(-2)²-4(√3)(-√3)]/2(√3)
=> x = [2±√(4+12)]/2√3
=> x = (2±√16)/2√3
=> x = (2±4)/2√3
=> x = 2(1±2)/2√3
=> x = (1±2)/√3
=> x = (1+2)/√3 or (1-2)/√3
=> x = 3/√3 or -1/√3
=> x = (√3×√3)/√3 or -1/√3
=> x = √3 or -1/√3
Roots are √3 and -1/√3
Answer:-
The roots of the given equation are √3 and -1/√3
Used formulae:-
- (a-b)² = a²-2ab+b²
- x = [-b±√(b²-4ac)]/2a
- The standard quadratic equation ax²+bx+c = 0
Used Methods:-
- Factorization method (Splitting the middle term)
- Completing the square method
- Formula method (Sridharacharya formula)