Define mole.How many moles are present in 100g of H2O?
Answers
Answer:
Number of moles=100g/ 18.02 g/ moles= 5.55 moles.
Explanation:
The mole is the unit of amount in chemistry. ... A mole of a substance is defined as: The mass of substance containing the same number of fundamental units as there are atoms in exactly 12.000 g of 12C. Fundamental units may be atoms, molecules, or formula units, depending on the substance concerned.
Explanation:The mole is the unit of amount in chemistry. It provides a bridge between the atom and the macroscopic amounts of material that we work with in the laboratory. It allows the chemist to weigh out amounts of two substances, say iron and sulfur, such that equal numbers of atoms of iron and sulfur are obtained. A mole of a substance is defined as:
The mole is the unit of amount in chemistry. It provides a bridge between the atom and the macroscopic amounts of material that we work with in the laboratory. It allows the chemist to weigh out amounts of two substances, say iron and sulfur, such that equal numbers of atoms of iron and sulfur are obtained. A mole of a substance is defined as:The mass of substance containing the same number of fundamental units as there are atoms in exactly 12.000 g of 12C.
The mole is the unit of amount in chemistry. It provides a bridge between the atom and the macroscopic amounts of material that we work with in the laboratory. It allows the chemist to weigh out amounts of two substances, say iron and sulfur, such that equal numbers of atoms of iron and sulfur are obtained. A mole of a substance is defined as:The mass of substance containing the same number of fundamental units as there are atoms in exactly 12.000 g of 12C.Fundamental units may be atoms, molecules, or formula units, depending on the substance concerned. At present, our best estimate of the number of atoms in 12.000 g of 12C is 6.022 x 1023, a huge number of atoms. This is obviously a very important quantity. For historical reasons, it is called Avogadro's Number, and is given the symbol NA.
The mole is the unit of amount in chemistry. It provides a bridge between the atom and the macroscopic amounts of material that we work with in the laboratory. It allows the chemist to weigh out amounts of two substances, say iron and sulfur, such that equal numbers of atoms of iron and sulfur are obtained. A mole of a substance is defined as:The mass of substance containing the same number of fundamental units as there are atoms in exactly 12.000 g of 12C.Fundamental units may be atoms, molecules, or formula units, depending on the substance concerned. At present, our best estimate of the number of atoms in 12.000 g of 12C is 6.022 x 1023, a huge number of atoms. This is obviously a very important quantity. For historical reasons, it is called Avogadro's Number, and is given the symbol NA.Unfortunately, the clumsy definition of the mole obscures its utility. It is nearly analogous to defining a dozen as the mass of a substance that contains the same number of fundamental units as are contained in 733 g of Grade A large eggs. This definition completely obscures the utility of the dozen: that it is 12 things! Similarly, a mole is NA things. The mole is the same kind of unit as the dozen -- a certain number of things. But it differs from the dozen in a couple of ways. First, the number of things in a mole is so huge that we cannot identify with it in the way that we can identify with 12 things. Second, 12 is an important number in the English system of weights and measures, so the definition of a dozen as 12 things makes sense. However, the choice of the unusual number, 6.022 x 1023, as the number of things in a mole seems odd. Why is this number chosen? Would it not make more sense to define a mole as 1.0 x 1023 things, a nice (albeit large) integer that everyone can easily remember? To understand why the particular number, 6.022 x 1023 is used, it is necessary to resurrect an older, in some ways more sensible and useful, definition of the mole, which is grounded in the atomic weight scale addressed above.