Math, asked by Anonymous, 6 months ago

definite integrals....​

Attachments:

Answers

Answered by Anonymous
9

Given Integrand,

 \displaystyle \sf  \int_{0}^{1}  \dfrac{cos {}^{ - 1}x }{ \sqrt{1 -  {x}^{2} } } dx

Let t = arccos(x)

Differentiating w.r.t x on both sides,

 \implies \sf \:  \dfrac{dt}{dx}  =   \dfrac{ - 1}{ \sqrt{1 -  {x}^{2} } }  \\  \\ \implies \sf \:  - dt( \sqrt{1 -  {x}^{2} } ) = dx

When x = 1, t = arccos (x) = 0

When x = 0, t = arccos(x) = π/2

Therefore,

 \longrightarrow \displaystyle \sf   - \int_{ \frac{\pi}{2} }^{0}  \dfrac{t}{ \sqrt{1 -  {x}^{2} } } ( \sqrt{1 -  {x}^{2} })dt  \\  \\  \longrightarrow \displaystyle \sf   - \int_{ \frac{\pi}{2} }^{0} t \: dt \\  \\ \longrightarrow \displaystyle \sf   -  \dfrac{  \: {t}^{2} }{2}   \bigg| _{ \frac{\pi}{2} }^{0} \\  \\ \longrightarrow \displaystyle \sf   -  \dfrac{  \: {0}^{2} }{2} +  \dfrac{ (\frac{\pi}{2}) {}^{2}  }{2}   \\  \\ \longrightarrow \displaystyle \sf \:  \dfrac{  \:  \: {\pi}^{2} }{8}

Similar questions