démontrer que les égalité suivantes sont vraies pour n'importe quelles valeurs de a et b
4ab=(a+b)²-(a-b)²
(a+b)(a-b)+b²=ab+a(a-b)
Answers
Answered by
4
Answer:
(a+b)^2 = (a+b) (a+b) = A^2+B^2+AB+AB
(a-b)^2= (a-b) (a-b) = A^2+B^2-AB-AB
Equate the two equations:
(A^2+B^2+2AB) - (A^2+B^2-2AB)
The minus sign means that both the A^2 and B^2 cancel:
2AB - - 2AB= 4AB; Both minus signs next to each other means that they are replaced with a + sign.
FOLLOW ME
Step-by-step explanation:
Answered by
19
Step-by-step explanation:
Hi friend, Here is the required answer:-
LHS-. (a-b)²= a²+b²-2ab
RHS- (a+b)²-4ab = a²+b²+2ab-4ab= a²+b²-2ab.
Since LHS = RHS
So this equation is verified.
I hope you understood..
Please mark as brainliest answer!!!
Similar questions