Derivate by first principal
f(x). = secx
Answers
Answered by
0
Heya mate
The answer of ur question is
'(x)=limh→0f(x+h)−f(x)h
=limh→0sec(x+h)−sec(x)h
=limh→01cos(x+h)−1cos(x)h
=limh→0cosx−cos(x+h)cos(x+h)cos(x)h
=limh→0cosx−cos(x+h)hcos(x+h)cos(x)
=limh→0cosx−(cosxcosh−sinxsinh)hcos(x+h)cos(x)
=limh→0cosx−cosxcosh+sinxsinhhcos(x+h)cos(x)
=limh→0cosx(1−cosh)+sinxsinhhcos(x+h)cos(x)
=limh→0cosx(1−cosh)hcos(x+h)cos(x)+sinxsinhhcos(x+h)cos(x)
=limh→0(1−cosh)hcos(x+h)+tanxsinhhcos(x+h)
=limh→01−coshh⋅sec(x+h)+sinhh⋅tanxsec(x+h)
Then we use two standard calculus limits:
limθ→01−cosθθ=0 and limθ→0sinθθ=1
Which gives us:
f'(x)=0⋅sec(x)+1⋅tanxsec(x)
=tanxsecx
The answer of ur question is
'(x)=limh→0f(x+h)−f(x)h
=limh→0sec(x+h)−sec(x)h
=limh→01cos(x+h)−1cos(x)h
=limh→0cosx−cos(x+h)cos(x+h)cos(x)h
=limh→0cosx−cos(x+h)hcos(x+h)cos(x)
=limh→0cosx−(cosxcosh−sinxsinh)hcos(x+h)cos(x)
=limh→0cosx−cosxcosh+sinxsinhhcos(x+h)cos(x)
=limh→0cosx(1−cosh)+sinxsinhhcos(x+h)cos(x)
=limh→0cosx(1−cosh)hcos(x+h)cos(x)+sinxsinhhcos(x+h)cos(x)
=limh→0(1−cosh)hcos(x+h)+tanxsinhhcos(x+h)
=limh→01−coshh⋅sec(x+h)+sinhh⋅tanxsec(x+h)
Then we use two standard calculus limits:
limθ→01−cosθθ=0 and limθ→0sinθθ=1
Which gives us:
f'(x)=0⋅sec(x)+1⋅tanxsec(x)
=tanxsecx
Answered by
1
HEY mate
=========
Solution -:
=========
◆Refer the attachment◆
=========
Solution -:
=========
◆Refer the attachment◆
Attachments:
Similar questions