Math, asked by sakshamj70, 6 days ago

derivative by first principal f(x) = sec√x​

Answers

Answered by mathdude500
6

\large\underline{\sf{Solution-}}

Given function is

\rm \: f(x) = sec \sqrt{x} \\

So,

\rm \: f(x + h) = sec \sqrt{x + h} \\

Now, Using Definition of First Principal, we have

\rm \: f'(x) = \displaystyle\lim_{h \to 0}\sf  \frac{f(x + h) - f(x)}{h}  \\

\rm \: f'(x) = \displaystyle\lim_{h \to 0}\sf  \frac{sec \sqrt{x + h} - sec \sqrt{x}}{h}  \\

\rm \: f'(x) = \displaystyle\lim_{h \to 0}\sf \:  \frac{1}{h}\bigg(\dfrac{1}{cos \sqrt{x + h} }  - \dfrac{1}{cos \sqrt{x} } \bigg)    \\

\rm \: f'(x) = \displaystyle\lim_{h \to 0}\sf \:  \frac{1}{h}\bigg(\dfrac{cos \sqrt{x}  - cos \sqrt{x + h} }{cos \sqrt{x + h}  \:  \: cos \sqrt{x} } \bigg)\\

\rm \: f'(x) =\dfrac{1}{ {cos}^{2}  \sqrt{x} }  \displaystyle\lim_{h \to 0}\sf  \frac{cos \sqrt{x}  - cos \sqrt{x + h} }{h}  \\

We know,

\boxed{\rm{  \:cosx - cosy = 2sin\bigg[\dfrac{x + y}{2} \bigg]sin\bigg[\dfrac{y - x}{2} \bigg] \: }}

So, using this result, we get

\rm \: f'(x) =\dfrac{1}{ {cos}^{2}  \sqrt{x} }  \displaystyle\lim_{h \to 0}\sf   \frac{2sin\bigg[\dfrac{ \sqrt{x}  +  \sqrt{x + h} }{2} \bigg]sin\bigg[\dfrac{ \sqrt{x + h}  -  \sqrt{x} }{2} \bigg]}{h}   \\

\rm \: f'(x) =\dfrac{2sin \sqrt{x} }{ {cos}^{2}  \sqrt{x} }  \displaystyle\lim_{h \to 0}\sf   \frac{sin\bigg[\dfrac{ \sqrt{x + h}  -  \sqrt{x} }{2} \bigg]}{h}   \\

\rm \: f'(x) =\dfrac{2sin \sqrt{x} }{ {cos}^{2}  \sqrt{x} }  \displaystyle\lim_{h \to 0}\sf   \frac{sin\bigg[\dfrac{ \sqrt{x + h}  -  \sqrt{x} }{2} \bigg]}{ \dfrac{ \sqrt{x + h}  -  \sqrt{x} }{2} }  \times  \frac{\dfrac{ \sqrt{x + h}  -  \sqrt{x} }{2} }{h}   \\

We know,

\boxed{\rm{  \:\displaystyle\lim_{x \to 0}\sf  \frac{sinx}{x} = 1 \: }} \\

So, using this result, we get

\rm \: f'(x) =\dfrac{sin \sqrt{x} }{ {cos}^{2}  \sqrt{x} }  \displaystyle\lim_{h \to 0}\sf    \: 1 \times  \frac{\sqrt{x + h}  -  \sqrt{x}}{h}   \\

\rm \: f'(x) =\dfrac{sin \sqrt{x} }{ {cos}^{2}  \sqrt{x} }  \displaystyle\lim_{h \to 0}\sf  \frac{\sqrt{x + h}  -  \sqrt{x}}{h}  \times \dfrac{ \sqrt{x + h} + \sqrt{x} }{ \sqrt{x + h}  +  \sqrt{x} }   \\

\rm \: f'(x) =\dfrac{sin \sqrt{x} }{ {cos}^{2}  \sqrt{x} }  \displaystyle\lim_{h \to 0}\sf   \dfrac{ x + h - x }{h(\sqrt{x + h}  +  \sqrt{x}) }   \\

\rm \: f'(x) =\dfrac{sin \sqrt{x} }{ {cos}^{2}  \sqrt{x} }  \displaystyle\lim_{h \to 0}\sf   \dfrac{ h }{h(\sqrt{x + h}  +  \sqrt{x}) }   \\

\rm \: f'(x) =\dfrac{sin \sqrt{x} }{ {cos}^{2}  \sqrt{x} }  \displaystyle\lim_{h \to 0}\sf   \dfrac{1}{\sqrt{x + h}  +  \sqrt{x} }   \\

\rm \: f'(x) =\dfrac{sin \sqrt{x} }{ {cos}^{2}  \sqrt{x} }   \times    \dfrac{1}{\sqrt{x}  +  \sqrt{x} }   \\

\rm \: f'(x) =\dfrac{sin \sqrt{x} }{ {cos}^{2}  \sqrt{x} }   \times    \dfrac{1}{2\sqrt{x} }   \\

\rm \: f'(x) =\dfrac{sin \sqrt{x} }{ {cos}  \sqrt{x}  \:  \: cos \sqrt{x} }   \times    \dfrac{1}{2\sqrt{x} }   \\

\rm \: f'(x) = \dfrac{sec \sqrt{x}  \: tan \sqrt{x} }{2\sqrt{x} } \\

\rm\implies \:\rm \: \boxed{\rm{  \:f'(x) = \dfrac{sec \sqrt{x}  \: tan \sqrt{x} }{2\sqrt{x} }  \:  \: }}\\

\rule{190pt}{2pt}

Additional Information :-

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions