Math, asked by Jasmine4264, 1 year ago

Derivative of ( cos( 2 sin inverse of cosx))

Answers

Answered by Sharad001
27

 \huge \texttt{ \red{ \underline{question }}}\:  \:  \\  \\  \small  \bf{ find \: the \: derivative \: of \:  \cos \big(2 { \sin}^{ - 1}  \cos(x) \big) } \\  \\  \\  \huge \:  \texttt{ \underline{answer}} \\ let \: \\  y \:  = \cos {\big(2 { \sin}^{ - 1}  \cos(x) \big) } \:

Differentiating on both sides with respect to "x",

    \small \frac{dy}{dx}  =  -  \sin(2 { \sin }^{ - 1} \cos(x)  )   \frac{d}{dx}  \big(2 { \sin }^{ - 1}  \cos(x)  \big) \\  \\  \small \frac{ dy}{dx}  = -  \sin(2 { \sin }^{ - 1} \cos(x)  )  \:  \bigg( \frac{2}{ \sqrt{1 -  { \cos }^{2} x} }  \bigg) \frac{d}{dx}  \cos(x)  \\  \\  \small \:  \boxed{ \frac{dy}{dx}  =  -  \sin(2 { \sin }^{ - 1} \cos(x)  )  \bigg( \frac{2}{ \sin(x) }  \bigg) \times  \big( -  \sin(x)  \big)}

This is the required answer .

Similar questions