Math, asked by anupamavs2019, 9 months ago

derivative of e^(x-y)=x^y prove that derivative is logx /(log e*x)^2

Answers

Answered by Anand6789
1

Step-by-step explanation:

Attachments:
Answered by shaniyanajeem
1

Answer:

 {x}^{y }  =  {e}^{x - y}  \\  log( {x}^{y} )  =   log( {e}^{x - y} )  \\ y \:  log(x)  = (x - y) log(e)   \:  \:  \:  \:  \:  \:  \:  \:  \:( log \: e = 1) \\  \:  \:    \: y  \:  log(x)  = x - y \\ y \: log(x)  + y = x \\ y(log(x) + 1) = x \\ y =  \frac{x}{log(x) + 1}  \\  \frac{dy}{dx}  =  \frac{(log(x) + 1)(1) - x(  \frac{1}{x} + 0) }{ {(1 + log(x))}^{2} }  \\ \frac{dy}{dx}  =  \frac{log(x) + 1 - 1}{ {(1 + log(x))}^{2} }  \\  \frac{dy}{dx} =  \frac{log(x)}{ {(1 + log(x))}^{2} }  \\  \frac{dy}{dx }  =  \frac{log(x)}{ {(log(e) +log(x)) }^{2} }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  (log \: e = 1) \\  \frac{dy}{dx}  =  \frac{log(x)}{ {log(ex)}^{2} }  \:  \:  \:  \:  \:  \:  \:  \: (log \: a + log \: b = log(ab)) \\ hence \: the \: proof

Hope this will help you dear

Similar questions