derivative of sec^2x + tan^2x
Answers
Answered by
7
EXPLANATION.
Derivative of :
⇒ sec²x + tan²x.
As we know that,
⇒ d(sec x)/dx = sec(x)tan(x).
⇒ d(tan x)/dx = sec²x.
Using this formula in equation, we get.
By applying chain rule method, we get.
⇒ y = sec²x + tan²x.
⇒ dy/dx = 2 sec(x).d(sec x)/dx + 2 tan(x).d(tan x)/dx.
⇒ dy/dx = 2 sec(x).sec(x).tan(x) + 2 tan(x).sec²(x).
⇒ dy/dx = 2sec²x.tan(x) + 2tan(x).sec²(x).
⇒ dy/dx = 4sec²x.tan(x).
MORE INFORMATION.
Nth derivatives of some standard functions.
Similar questions