derivative of (sinx)logx+xsinx
Answers
Answer:
sinx
------- + logx cosx +x cosx +sinx
x
Step-by-step explanation:
given--->
---------
(sinx) logx +x sinx
To find--->
------------
Derivative of given function
solution --->
--------------
formula used--->
--------------------
d
------ (sinx) =cosx
dx
d 1
-----(logx) =------
dx x
d
-----(x) = 1
dx
d dv du
------(u v) =u ------ + v -------
dx dx dx
now coming to question
let
y=(sinx) logx + x sinx
differentiating with respect to x
dy d d
-----=-------(sinx log x) +-----(x sinx)
dx dx dx
d d d
=sinx -----(logx) +logx----(sinx) +x----(sinx)
dx dx dx
d
+sinx ------(x)
dx
1
=sinx( -----)+logx cosx +x cosx +sinx (1)
x
dy sinx
----- =--------+logx cosx +x cox + sinx dx x x
Hope it helps you
Thanks