Math, asked by kvkrishnaveni, 1 year ago

derivative of (sinx)logx+xsinx​

Answers

Answered by rishu6845
6

Answer:

sinx

------- + logx cosx +x cosx +sinx

x

Step-by-step explanation:

given--->

---------

(sinx) logx +x sinx

To find--->

------------

Derivative of given function

solution --->

--------------

formula used--->

--------------------

d

------ (sinx) =cosx

dx

d 1

-----(logx) =------

dx x

d

-----(x) = 1

dx

d dv du

------(u v) =u ------ + v -------

dx dx dx

now coming to question

let

y=(sinx) logx + x sinx

differentiating with respect to x

dy d d

-----=-------(sinx log x) +-----(x sinx)

dx dx dx

d d d

=sinx -----(logx) +logx----(sinx) +x----(sinx)

dx dx dx

d

+sinx ------(x)

dx

1

=sinx( -----)+logx cosx +x cosx +sinx (1)

x

dy sinx

----- =--------+logx cosx +x cox + sinx dx x x

Hope it helps you

Thanks

Answered by anu24239
8

\huge\underline\mathfrak\red{Answer}

( \sin \alpha ) log \alpha  +  \alpha  \sin \alpha  = y \\  \\  \frac{dy}{d \alpha }  =  \frac{d( \sin \alpha) }{d \alpha }  log \alpha  +  \frac{d( log \alpha ) }{d \alpha }  \sin \alpha  +  \alpha  \frac{d (\sin \alpha )}{d \alpha }  +  \frac{d \alpha }{d \alpha }  \sin \alpha  \\  \\  \frac{dy }{d \alpha }  =  (\cos \alpha  log \alpha  +  \frac{ \sin \alpha  }{ \alpha }  +  \alpha  \cos \alpha  +  \sin \alpha ) \frac{d \alpha }{d \alpha }  \\  \\ dy =  (\cos \alpha  log \alpha  +  \frac{ \sin \alpha  }{ \alpha }  +  \alpha  \cos \alpha  +  \sin \alpha )d \alpha

Similar questions