Math, asked by karanlataye580, 9 months ago

Derivative
of tan√x with rispect to x​

Answers

Answered by pal69
0

Answer:

d(tan√x) /dx=sec²√x.d(√x) /dx

= sec²√x.1/2√x=(sec²√x) /2√x

Answered by waqarsd
1

Answer:

 \frac{ {sec}^{2} \sqrt{x}  }{2 \sqrt{x} } \\  \\

Step-by-step explanation:

f(x) = tan( \sqrt{x} ) \\  \\ formulae \\  \\  \frac{d}{dx} tan \: x \:  =  \:  {sec}^{2} x \\  \\  \frac{d}{dx}  \sqrt{x}  =  \frac{1}{2 \sqrt{x} }  \\  \\  \frac{d}{dx} (a(b(x)) =  {a}^{l} (b(x)) {b}^{l} (x) \\  \\ now \\  \\  {f}^{l} (x) =  \frac{d}{dx} tan \sqrt{x}  \\  \\ {f}^{l} (x) =  {sec}^{2}  \sqrt{x}  \frac{d}{dx}  \sqrt{x}  \\  \\ {f}^{l} (x) =  \frac{ {sec}^{2} \sqrt{x}  }{2 \sqrt{x} }  \\  \\

HOPE IT HELPS

Similar questions