Derivative of x=cos x- cos 2x ,y= sin x - sin 2x
Answers
Answer:
Explanation:
Here,
y
=
sin
x
cos
x
−
cos
2
x
Using Product Rule and Chain Rule ,
d
y
d
x
=
sin
x
d
d
x
(
cos
x
)
+
cos
x
d
d
x
(
sin
x
)
−
2
cos
x
d
d
x
(
cos
x
)
=
sin
x
(
−
sin
x
)
+
cos
x
cos
x
−
2
cos
x
(
−
sin
x
)
=
−
sin
2
x
+
cos
2
x
+
2
sin
x
cos
x
=
cos
2
x
−
sin
2
x
+
2
sin
x
cos
x
=
cos
2
x
+
sin
2
x
Note :
(
1
)
sin
2
x
=
2
sin
x
cos
x
(
2
)
cos
2
x
=
cos
2
x
−
sin
2
x
Answer link
Related topic
Derivative Rules for y=cos(x) and y=tan(x)
Questions
Related questions
What is the derivative of
y
=
cos
(
x
)
?
What is the derivative of
y
=
tan
(
x
)
?
How do you find the 108th derivative of
y
=
cos
(
x
)
?
How do you find the derivative of
y
=
cos
(
x
)
from first principle?
How do you find the derivative of
y
=
cos
(
x
2
)
?
How do you find the derivative of
y
=
e
x
cos
(
x
)
?
How do you find the derivative of
y
=
x
cos
(
x
)
?
How do you find the second derivative of
y
=
cos
(
x
2
)
?
How do you find the 50th derivative of
y
=
cos
(
x
)
?
How do you find the derivative