Math, asked by saurabhbajaj30, 5 hours ago

derivative of y = 5^x + x^x​

Answers

Answered by mathdude500
2

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:y =  {5}^{x} +  {x}^{x}

Let assume that

\rm :\longmapsto\:y = u + v

where,

\rm :\longmapsto\:u =  {5}^{x}

and

\rm :\longmapsto\:v =  {x}^{x}

Now,

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{du}{dx} + \dfrac{dv}{dx} -  -  - (1)

Consider

\rm :\longmapsto\:u =  {5}^{x}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}u = \dfrac{d}{dx}{5}^{x}

\rm :\longmapsto\:\dfrac{du}{dx}= {5}^{x} \: log5 -  -  - (2)

Consider

\rm :\longmapsto\:v =  {x}^{x}

On taking log on both sides, we get

\rm :\longmapsto\:logv = log{x}^{x}

\rm :\longmapsto\:logv = x \: logx

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}logv =\dfrac{d}{dx}[ x \: logx]

\rm :\longmapsto\:\dfrac{1}{v}\dfrac{dv}{dx} = x\dfrac{d}{dx}logx \:  +  \: logx\dfrac{d}{dx}x

\rm :\longmapsto\:\dfrac{1}{v}\dfrac{dv}{dx} = x \times \dfrac{1}{x}  \:  +  \: logx \times 1

\rm :\longmapsto\:\dfrac{1}{v}\dfrac{dv}{dx} = 1 + logx

\rm :\longmapsto\:\dfrac{dv}{dx} = v[1 + logx]

\rm :\longmapsto\:\dfrac{dv}{dx} =  {x}^{x} [1 + logx] -  -  -  - (3)

On substituting the equation (2) and (3) in equation (1), we get

\rm :\longmapsto\:\dfrac{dy}{dx} =  {5}^{x}log5 +  {x}^{x}(1 + logx)

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Formula Used

\boxed{\tt{ \: \dfrac{d}{dx}logx =  \frac{1}{x} \: }}

\boxed{\tt{ \dfrac{d}{dx}x = 1 \: }}

\boxed{\tt{ \:  \dfrac{d}{dx} {a}^{x} =  {a}^{x} \: loga \: }}

\boxed{\tt{ \dfrac{d}{dx}uv \:  =  \: v\dfrac{d}{dx}u \:  +  \: v\dfrac{d}{dx}u}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to Know

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Answered by EmperorSoul
9

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:y =  {5}^{x} +  {x}^{x}

Let assume that

\rm :\longmapsto\:y = u + v

where,

\rm :\longmapsto\:u =  {5}^{x}

and

\rm :\longmapsto\:v =  {x}^{x}

Now,

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{du}{dx} + \dfrac{dv}{dx} -  -  - (1)

Consider

\rm :\longmapsto\:u =  {5}^{x}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}u = \dfrac{d}{dx}{5}^{x}

\rm :\longmapsto\:\dfrac{du}{dx}= {5}^{x} \: log5 -  -  - (2)

Consider

\rm :\longmapsto\:v =  {x}^{x}

On taking log on both sides, we get

\rm :\longmapsto\:logv = log{x}^{x}

\rm :\longmapsto\:logv = x \: logx

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}logv =\dfrac{d}{dx}[ x \: logx]

\rm :\longmapsto\:\dfrac{1}{v}\dfrac{dv}{dx} = x\dfrac{d}{dx}logx \:  +  \: logx\dfrac{d}{dx}x

\rm :\longmapsto\:\dfrac{1}{v}\dfrac{dv}{dx} = x \times \dfrac{1}{x}  \:  +  \: logx \times 1

\rm :\longmapsto\:\dfrac{1}{v}\dfrac{dv}{dx} = 1 + logx

\rm :\longmapsto\:\dfrac{dv}{dx} = v[1 + logx]

\rm :\longmapsto\:\dfrac{dv}{dx} =  {x}^{x} [1 + logx] -  -  -  - (3)

On substituting the equation (2) and (3) in equation (1), we get

\rm :\longmapsto\:\dfrac{dy}{dx} =  {5}^{x}log5 +  {x}^{x}(1 + logx)

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Formula Used

\boxed{\tt{ \: \dfrac{d}{dx}logx =  \frac{1}{x} \: }}

\boxed{\tt{ \dfrac{d}{dx}x = 1 \: }}

\boxed{\tt{ \:  \dfrac{d}{dx} {a}^{x} =  {a}^{x} \: loga \: }}

\boxed{\tt{ \dfrac{d}{dx}uv \:  =  \: v\dfrac{d}{dx}u \:  +  \: v\dfrac{d}{dx}u}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

More to Know

\begin{gathered}\boxed{\begin{array}{c|c} \bf f(x) & \bf \dfrac{d}{dx}f(x) \\ \\  \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf k & \sf 0 \\ \\ \sf sinx & \sf cosx \\ \\ \sf cosx & \sf  -  \: sinx \\ \\ \sf tanx & \sf  {sec}^{2}x \\ \\ \sf cotx & \sf  -  {cosec}^{2}x \\ \\ \sf secx & \sf secx \: tanx\\ \\ \sf cosecx & \sf  -  \: cosecx \: cotx\\ \\ \sf  \sqrt{x}  & \sf  \dfrac{1}{2 \sqrt{x} } \\ \\ \sf logx & \sf \dfrac{1}{x}\\ \\ \sf  {e}^{x}  & \sf  {e}^{x}  \end{array}} \\ \end{gathered}

Similar questions