derivative of y = sin5x
Answers
Solution:
Given to differentiate:
Differentiating both sides with respect to x, we get:
We know that:
Using this result, we get:
Which is our required answer.
Learn More:
1. Derivative of f(x) using first principle.
2. Derivative of standard functions.
3. Derivative of trigonometric functions.
4. Derivatives of inverse trigonometric functions.
5. Derivatives of hyperbolic trigonometric functions.
6. Derivatives of inverse hyperbolic trigonometric functions.
7. Fundamental rules of derivative.
Answer:
Solution:
Given to differentiate:
\tt\longrightarrow y=sin\:5x⟶y=sin5x
Differentiating both sides with respect to x, we get:
\tt\longrightarrow \dfrac{dy}{dx}=\dfrac{d}{dx}(sin\:5x)⟶
dx
dy
=
dx
d
(sin5x)
We know that:
\bigstar\:\:\underline{\boxed{\tt\dfrac{d}{dx}(sin\:nx)=n\:cos\:nx}}★
dx
d
(sinnx)=ncosnx
Using this result, we get:
\tt\longrightarrow \dfrac{dy}{dx}=5\cdot cos\:5x⟶
dx
dy
=5⋅cos5x
\tt\longrightarrow \dfrac{dy}{dx}=5\: cos\:5x⟶
dx
dy
=5cos5x
Which is our required answer.
Learn More:
1. Derivative of f(x) using first principle.
\displaystyle\tt\longrightarrow f'(x)=\lim_{h\to 0}\dfrac{f(x+h)-f(x)}{h}⟶f
′
(x)=
h→0
lim
h
f(x+h)−f(x)
2. Derivative of standard functions.
\tt 1.\:\: \dfrac{d}{dx}(k)=01.
dx
d
(k)=0
\tt 2.\:\: \dfrac{d}{dx}(x^n)=nx^{n-1}2.
dx
d
(x
n
)=nx
n−1
\tt 3.\:\: \dfrac{d}{dx}(a^x)=a^x\:ln\:x3.
dx
d
(a
x
)=a
x
lnx
\tt 4.\:\: \dfrac{d}{dx}(e^x)=e^x4.
dx
d
(e
x
)=e
x
\tt 5.\:\: \dfrac{d}{dx}(log_{a}x)=\dfrac{1}{x\:ln\:a}5.
dx
d
(log
a
x)=
xlna
1
\tt 6.\:\: \dfrac{d}{dx}(ln\:x)=\dfrac{1}{x}6.
dx
d
(lnx)=
x
1
\tt 7.\:\: \dfrac{d}{dx}(|x|)=\dfrac{x}{|x|}7.
dx
d
(∣x∣)=
∣x∣
x
3. Derivative of trigonometric functions.
\tt 1.\:\: \dfrac{d}{dx}(sin\:x)=cos\:x1.
dx
d
(sinx)=cosx
\tt 2.\:\: \dfrac{d}{dx}(cos\:x)=-sin\:x2.
dx
d
(cosx)=−sinx
\tt 3.\:\: \dfrac{d}{dx}(tan\:x)=sec^2x3.
dx
d
(tanx)=sec
2
x
\tt 4.\:\: \dfrac{d}{dx}(cot\:x)=-cosec^2x4.
dx
d
(cotx)=−cosec
2
x
\tt 5.\:\: \dfrac{d}{dx}(sec\:x)=sec\:x\:tan\:x5.
dx
d
(secx)=secxtanx
\tt 6.\:\: \dfrac{d}{dx}(cosec\:x)=-cosec\:x\:cot\:x6.
dx
d
(cosecx)=−cosecxcotx
4. Derivatives of inverse trigonometric functions.
\tt 1.\:\: \dfrac{d}{dx}(sin^{-1}x)=\dfrac{1}{\sqrt{1-x^2}}1.
dx
d
(sin
−1
x)=
1−x
2
1
\tt 2.\:\: \dfrac{d}{dx}(cos^{-1}x)=\dfrac{-1}{\sqrt{1-x^2}}2.
dx
d
(cos
−1
x)=
1−x
2
−1
\tt 3.\:\: \dfrac{d}{dx}(tan^{-1}x)=\dfrac{1}{1+x^2}3.
dx
d
(tan
−1
x)=
1+x
2
1
\tt 4.\:\: \dfrac{d}{dx}(cot^{-1}x)=\dfrac{-1}{1+x^2}4.
dx
d
(cot
−1
x)=
1+x
2
−1
\tt 5.\:\: \dfrac{d}{dx}(sec^{-1}x)=\dfrac{1}{|x|\sqrt{x^2-1}}5.
dx
d
(sec
−1
x)=
∣x∣
x
2
−1
1
\tt 6.\:\: \dfrac{d}{dx}(cosec^{-1}x)=\dfrac{-1}{|x|\sqrt{x^2-1}}6.
dx
d
(cosec
−1
x)=
∣x∣
x
2
−1
−1
5. Derivatives of hyperbolic trigonometric functions.
\tt 1.\:\: \dfrac{d}{dx}(sinh\:x)=cosh\:x1.
dx
d
(sinhx)=coshx
\tt 2.\:\: \dfrac{d}{dx}(cosh\:x)=sinh\:x2.
dx
d
(coshx)=sinhx
\tt 3.\:\: \dfrac{d}{dx}(tanh\:x)=sech^2x3.
dx
d
(tanhx)=sech
2
x
\tt 4.\:\: \dfrac{d}{dx}(coth\:x)=-cosech^2x4.
dx
d
(cothx)=−cosech
2
x
\tt 5.\:\: \dfrac{d}{dx}(sech\:x)=-sech\:x\:tanh\:x5.
dx
d
(sechx)=−sechxtanhx
\tt 6.\:\: \dfrac{d}{dx}(cosech\:x)=-cosech\:x\:coth\:x6.
dx
d
(cosechx)=−cosechxcothx
6. Derivatives of inverse hyperbolic trigonometric functions.
\tt 1.\:\: \dfrac{d}{dx}(sinh^{-1}x)=\dfrac{1}{\sqrt{x^2+1}}1.
dx
d
(sinh
−1
x)=
x
2
+1
1
\tt 2.\:\: \dfrac{d}{dx}(cosh^{-1}x)=\dfrac{1}{\sqrt{x^2-1}}2.
dx
d
(cosh
−1
x)=
x
2
−1
1
\tt 3.\:\: \dfrac{d}{dx}(tanh^{-1}x)=\dfrac{1}{1-x^2}3.
dx
d
(tanh
−1
x)=
1−x
2
1
\tt 4.\:\: \dfrac{d}{dx}(coth^{-1}x)=\dfrac{1}{1-x^2}4.
dx
d
(coth
−1
x)=
1−x
2
1
\tt 5.\:\: \dfrac{d}{dx}(sech^{-1}x)=\dfrac{-1}{x\sqrt{1-x^2}}5.
dx
d
(sech
−1
x)=
x
1−x
2
−1
\tt 6.\:\: \dfrac{d}{dx}(cosech^{-1}x)=\dfrac{-1}{|x|\sqrt{1+x^2}}6.
dx
d
(cosech
−1
x)=
∣x∣
1+x
2
−1
7. Fundamental rules of derivative.
\tt 1.\:\: \dfrac{d}{dx}(cf)=c\dfrac{df}{dx}1.
dx
d
(cf)=c
dx
df
\tt 2.\:\: \dfrac{d}{dx}(f\pm g)=\dfrac{df}{dx}\pm\dfrac{dg}{dx}\:\:\:\:\:\:[Sum\: and\:difference\:\:rules]2.
dx
d
(f±g)=
dx
df
±
dx
dg
[Sumanddifferencerules]
\tt 3.\:\: \dfrac{d}{dx}(fg)=g\dfrac{df}{dx}+f\dfrac{dg}{dx}\:\:\:\:\:\:[Product\:\:Rule]3.
dx
d
(fg)=g
dx
df
+f
dx
dg
[ProductRule]
\tt 4.\:\: \dfrac{d}{dx}\bigg(\dfrac{f}{g}\bigg)=\dfrac{f'g-g'f}{g^2}\:\:\:\:\:\:[Quotient\:\:Rule]4.
dx
d
(
g
f
)=
g
2
f
′
g−g
′
f
[QuotientRule]
\tt 5.\:\: \dfrac{d}{dx}f(g(x))=f'(g(x))\cdot g'(x)\:\:\:\:\:\:[Chain\:\:Rule]5.
dx
d
f(g(x))=f
′
(g(x))⋅g
′
(x)[ChainRule]