Math, asked by Alan9900, 7 hours ago

derivative . pls tell ​

Attachments:

Answers

Answered by mathdude500
14

\large\underline{\sf{Given- }}

\rm :\longmapsto\:y = \dfrac{sinx + cosx}{sinx - cosx}

\large\underline{\sf{To\:prove - }}

\rm :\longmapsto\:\dfrac{dy}{dx} = \dfrac{ - 2}{1 - sin2x}

 \red{\large\underline{\sf{Solution-}}}

Given that,

\rm :\longmapsto\:y = \dfrac{sinx + cosx}{sinx - cosx}

On differentiating both sides w. r. t. x, we get

\rm :\longmapsto\:\dfrac{d}{dx}y =\dfrac{d}{dx} \:  \dfrac{sinx + cosx}{sinx - cosx}

So,

\rm :\longmapsto\:\dfrac{dy}{dx} =\dfrac{d}{dx} \:  \dfrac{sinx + cosx}{sinx - cosx}

We know

\boxed{ \rm{ \dfrac{d}{dx} \frac{u}{v}  =  \frac{v\dfrac{d}{dx}u \:  -  \: u\dfrac{d}{dx}v}{ {v}^{2} } }}

So, on using this, we get

\rm \:=\dfrac{(sinx - cosx)\dfrac{d}{dx}(sinx + cosx) - (sinx + cosx)\dfrac{d}{dx}(sinx - cosx)}{ {(sinx - cosx)}^{2} }

We know,

 \red{\boxed{ \rm{ \dfrac{d}{dx}sinx = cosx}}}

and

 \red{\boxed{ \rm{ \dfrac{d}{dx}cosx = -  \:  sinx}}}

So, using this result, we get

\rm \:=\dfrac{(sinx - cosx)(cosx - sinx) - (sinx + cosx)(cosx + sinx)}{ {(sinx - cosx)}^{2} }

\rm \:  =  \:  \: \dfrac{  - {(sinx - cosx)}^{2}  -  {(sinx + cosx)}^{2} }{ {(sinx - cosx)}^{2} }

\rm \:  =  \:   - \: \dfrac{{(sinx - cosx)}^{2}   + {(sinx + cosx)}^{2} }{ {(sinx - cosx)}^{2} }

We know,

 \green{\boxed{ \rm{  {(x + y)}^{2} +  {(x - y)}^{2}  = 2( {x}^{2}  +  {y}^{2})}}}

and

 \green{\boxed{ \rm{  {(x  -  y)}^{2}   = {x}^{2}  +  {y}^{2} - 2xy}}}

So, using these Identities, we get

\rm \:  =  \:  -  \: \dfrac{2( {sin}^{2} x +  {cos}^{2}x) }{ {sin}^{2}x +  {cos}^{2}x - 2sinxcosx }

We know,

 \purple{\boxed{ \rm{  {sin}^{2}x +  {cos}^{2}x = 1}}} \:  \: and \:  \:  \purple{\boxed{ \rm{ sin2x = 2sinx \: cosx}}}

So, on using these two Identities, we get

\rm \:  =  \: -   \:  \dfrac{2}{1 - sin2x}

Hence,

\boxed{ \qquad \bf{  \frac{sinx + cosx}{sinx - cosx} =  \: -   \:  \dfrac{2}{1 - sin2x} \qquad}}

Additional Information :-

\boxed{ \rm{ \dfrac{d}{dx}x = 1}}

\boxed{ \rm{ \dfrac{d}{dx}k = 0}}

\boxed{ \rm{ \dfrac{d}{dx} \sqrt{x} =  \frac{1}{2 \sqrt{x} } }}

\boxed{ \rm{ \dfrac{d}{dx}logx =  \frac{1}{x}}}

\boxed{ \rm{ \dfrac{d}{dx} {e}^{x} =  {e}^{x}}}

\boxed{ \rm{ \dfrac{d}{dx} {a}^{x} =  {a}^{x} log(a) }}

\boxed{ \rm{ \dfrac{d}{dx}tanx =  {sec}^{2}x}}

\boxed{ \rm{ \dfrac{d}{dx}cotx =  { - cosec}^{2}x}}

Similar questions