derivatives sin^2x from first principal
Answers
Answered by
6
Answer:
Step-by-step explanation:
The derivative of sin 2x has to be determined from first principles.
For a function f(x) the derivative from first principles is lim_(h->0)(f(x+h)- f(x))/h
Using f(x) = sin 2x, the derivative is:
lim_(h->0)(sin(2*(x+h))- sin 2x)/h
=> lim_(h->0)(sin(2x+2h)- sin 2x)/h
=> lim_(h->0)(2*cos((2x + 2h + 2x)/2)*sin((2x+2h - 2x)/2))/h
=> lim_(h->0)(2*cos (2x+h)*sin h)/h
=> lim_(h->0)2*cos (2x+h)*(sin h)/h
=> lim_(h->0)2*cos (2x+h)*lim_(h->0)(sin h/h)
Use lim_(h->0)(sin h/h) = 1 and substituting h = 0
=> 2*cos 2x
The derivative of sin 2x is 2*cos 2x
Similar questions