Physics, asked by SHAHIDA3415, 10 months ago

Derive an expression for moment of inertia of a thin circular ring about an axis passing through its centre and perpendicular to the plane of the ring.

Answers

Answered by Anonymous
2

Answer:

Calculate the moment of inertia of a thin ring of mass m and radius R about an axis passing through its centre and perpendicular to the plane of the ring. Mass of the ring =M, circumference of the ring =2πR. Consider a small element of the ring at an angle θ from a particular reference radius.

Answered by rohit301486
15

	\blue{\bold{\underline{\underline{Answer:}}}}

 \green{\tt: \implies I= m {r}^{2} }

\orange{\bold{\underline{\underline{Step-by-step\:explanation:}}}}

\green{\underline \bold{Given :}}

 \tt: \implies Mass \: of \: ring = m

 \tt: \implies Radius \: of \: ring = r

 \red{\underline \bold{To \: Derive :}}

\tt: \implies Moment \: of \: inertia \: of \: ring =?

  • Given Question

\tt \circ \: Cutting \: an \: element \: of \: length \: dx

\tt \: \: \: at \: circumference \: of \: ring

\bold{As \: we \: know \: that }

\tt: \implies Mass \: in \: dx \: length = dm

\tt: \implies dm = \frac{m}{2\pi r} dx - - - - - (1)

 \bold{As \: we \: know \: that}

\tt: \implies I=( dm ){r}^{2}

\tt: \implies i = \frac{m}{2\pi r} dx \times {r}^{2}

\tt: \implies I= \frac{mr}{2\pi} dx

\tt: \implies I = \frac{mr}{2\pi} \int dx

\tt: \implies I= \frac{mr}{2\pi} \int \limits_{0}^{2\pi r} dx

 \tt: \implies i = \frac{mr}{2\pi} \bigg[x \bigg]_{0} ^{2\pi r}

\tt: \implies I= \frac{mr}{2\pi } \times 2\pi r

\green{\tt: \implies I= m {r}^{2} }

Similar questions