. Derive an expression for the angle between two lines y=m1x+c1 and y=m2x+c2
Answers
Answer:
nice question
Step-by-step explanation:
m2x+c2
30°
30°Step-by-step explanation:
30°Step-by-step explanation:m₁ = Tanθ₁
30°Step-by-step explanation:m₁ = Tanθ₁m₂ = Tanθ₂
30°Step-by-step explanation:m₁ = Tanθ₁m₂ = Tanθ₂Tan (θ₂ - θ₁) = | (Tanθ₂ - Tanθ₁)/(1 +Tanθ₂Tanθ₁) |
30°Step-by-step explanation:m₁ = Tanθ₁m₂ = Tanθ₂Tan (θ₂ - θ₁) = | (Tanθ₂ - Tanθ₁)/(1 +Tanθ₂Tanθ₁) |=> Tan (θ₂ - θ₁) = | (m₂ - m₁)/(1 + m₂m₁) |
30°Step-by-step explanation:m₁ = Tanθ₁m₂ = Tanθ₂Tan (θ₂ - θ₁) = | (Tanθ₂ - Tanθ₁)/(1 +Tanθ₂Tanθ₁) |=> Tan (θ₂ - θ₁) = | (m₂ - m₁)/(1 + m₂m₁) |√3x+y=1
30°Step-by-step explanation:m₁ = Tanθ₁m₂ = Tanθ₂Tan (θ₂ - θ₁) = | (Tanθ₂ - Tanθ₁)/(1 +Tanθ₂Tanθ₁) |=> Tan (θ₂ - θ₁) = | (m₂ - m₁)/(1 + m₂m₁) |√3x+y=1=> y = - √3x + 1
30°Step-by-step explanation:m₁ = Tanθ₁m₂ = Tanθ₂Tan (θ₂ - θ₁) = | (Tanθ₂ - Tanθ₁)/(1 +Tanθ₂Tanθ₁) |=> Tan (θ₂ - θ₁) = | (m₂ - m₁)/(1 + m₂m₁) |√3x+y=1=> y = - √3x + 1=> m₁ = - √3
30°Step-by-step explanation:m₁ = Tanθ₁m₂ = Tanθ₂Tan (θ₂ - θ₁) = | (Tanθ₂ - Tanθ₁)/(1 +Tanθ₂Tanθ₁) |=> Tan (θ₂ - θ₁) = | (m₂ - m₁)/(1 + m₂m₁) |√3x+y=1=> y = - √3x + 1=> m₁ = - √3x+√3y=1
30°Step-by-step explanation:m₁ = Tanθ₁m₂ = Tanθ₂Tan (θ₂ - θ₁) = | (Tanθ₂ - Tanθ₁)/(1 +Tanθ₂Tanθ₁) |=> Tan (θ₂ - θ₁) = | (m₂ - m₁)/(1 + m₂m₁) |√3x+y=1=> y = - √3x + 1=> m₁ = - √3x+√3y=1=> y = - x/√3 + 1/√3
30°Step-by-step explanation:m₁ = Tanθ₁m₂ = Tanθ₂Tan (θ₂ - θ₁) = | (Tanθ₂ - Tanθ₁)/(1 +Tanθ₂Tanθ₁) |=> Tan (θ₂ - θ₁) = | (m₂ - m₁)/(1 + m₂m₁) |√3x+y=1=> y = - √3x + 1=> m₁ = - √3x+√3y=1=> y = - x/√3 + 1/√3=> m₂ = -1/√3
30°Step-by-step explanation:m₁ = Tanθ₁m₂ = Tanθ₂Tan (θ₂ - θ₁) = | (Tanθ₂ - Tanθ₁)/(1 +Tanθ₂Tanθ₁) |=> Tan (θ₂ - θ₁) = | (m₂ - m₁)/(1 + m₂m₁) |√3x+y=1=> y = - √3x + 1=> m₁ = - √3x+√3y=1=> y = - x/√3 + 1/√3=> m₂ = -1/√3=> Tanθ = | ( -1/√3 - (-√3))/(1 + (-1/√3)( - √3)) |
30°Step-by-step explanation:m₁ = Tanθ₁m₂ = Tanθ₂Tan (θ₂ - θ₁) = | (Tanθ₂ - Tanθ₁)/(1 +Tanθ₂Tanθ₁) |=> Tan (θ₂ - θ₁) = | (m₂ - m₁)/(1 + m₂m₁) |√3x+y=1=> y = - √3x + 1=> m₁ = - √3x+√3y=1=> y = - x/√3 + 1/√3=> m₂ = -1/√3=> Tanθ = | ( -1/√3 - (-√3))/(1 + (-1/√3)( - √3)) |=> Tanθ = | (2/√3)/(2) |
30°Step-by-step explanation:m₁ = Tanθ₁m₂ = Tanθ₂Tan (θ₂ - θ₁) = | (Tanθ₂ - Tanθ₁)/(1 +Tanθ₂Tanθ₁) |=> Tan (θ₂ - θ₁) = | (m₂ - m₁)/(1 + m₂m₁) |√3x+y=1=> y = - √3x + 1=> m₁ = - √3x+√3y=1=> y = - x/√3 + 1/√3=> m₂ = -1/√3=> Tanθ = | ( -1/√3 - (-√3))/(1 + (-1/√3)( - √3)) |=> Tanθ = | (2/√3)/(2) |=> Tanθ = 1/√3
30°Step-by-step explanation:m₁ = Tanθ₁m₂ = Tanθ₂Tan (θ₂ - θ₁) = | (Tanθ₂ - Tanθ₁)/(1 +Tanθ₂Tanθ₁) |=> Tan (θ₂ - θ₁) = | (m₂ - m₁)/(1 + m₂m₁) |√3x+y=1=> y = - √3x + 1=> m₁ = - √3x+√3y=1=> y = - x/√3 + 1/√3=> m₂ = -1/√3=> Tanθ = | ( -1/√3 - (-√3))/(1 + (-1/√3)( - √3)) |=> Tanθ = | (2/√3)/(2) |=> Tanθ = 1/√3=> θ = 30°
30°Step-by-step explanation:m₁ = Tanθ₁m₂ = Tanθ₂Tan (θ₂ - θ₁) = | (Tanθ₂ - Tanθ₁)/(1 +Tanθ₂Tanθ₁) |=> Tan (θ₂ - θ₁) = | (m₂ - m₁)/(1 + m₂m₁) |√3x+y=1=> y = - √3x + 1=> m₁ = - √3x+√3y=1=> y = - x/√3 + 1/√3=> m₂ = -1/√3=> Tanθ = | ( -1/√3 - (-√3))/(1 + (-1/√3)( - √3)) |=> Tanθ = | (2/√3)/(2) |=> Tanθ = 1/√3=> θ = 30°angle between lines√3x+y=1 and x+√3y=1 = 30°