Math, asked by akashbs802, 1 month ago

. Derive an expression for the angle between two lines y=m1x+c1 and y=m2x+c2​

Answers

Answered by cookwithsisters52
0

Answer:

nice question

Step-by-step explanation:

m2x+c2

Answered by harelyquinn
0

30°

30°Step-by-step explanation:

30°Step-by-step explanation:m₁ = Tanθ₁

30°Step-by-step explanation:m₁ = Tanθ₁m₂ = Tanθ₂

30°Step-by-step explanation:m₁ = Tanθ₁m₂ = Tanθ₂Tan (θ₂ - θ₁)  =  | (Tanθ₂ - Tanθ₁)/(1 +Tanθ₂Tanθ₁) |

30°Step-by-step explanation:m₁ = Tanθ₁m₂ = Tanθ₂Tan (θ₂ - θ₁)  =  | (Tanθ₂ - Tanθ₁)/(1 +Tanθ₂Tanθ₁) |=> Tan (θ₂ - θ₁)  = | (m₂ - m₁)/(1 + m₂m₁) |

30°Step-by-step explanation:m₁ = Tanθ₁m₂ = Tanθ₂Tan (θ₂ - θ₁)  =  | (Tanθ₂ - Tanθ₁)/(1 +Tanθ₂Tanθ₁) |=> Tan (θ₂ - θ₁)  = | (m₂ - m₁)/(1 + m₂m₁) |√3x+y=1

30°Step-by-step explanation:m₁ = Tanθ₁m₂ = Tanθ₂Tan (θ₂ - θ₁)  =  | (Tanθ₂ - Tanθ₁)/(1 +Tanθ₂Tanθ₁) |=> Tan (θ₂ - θ₁)  = | (m₂ - m₁)/(1 + m₂m₁) |√3x+y=1=> y = - √3x + 1

30°Step-by-step explanation:m₁ = Tanθ₁m₂ = Tanθ₂Tan (θ₂ - θ₁)  =  | (Tanθ₂ - Tanθ₁)/(1 +Tanθ₂Tanθ₁) |=> Tan (θ₂ - θ₁)  = | (m₂ - m₁)/(1 + m₂m₁) |√3x+y=1=> y = - √3x + 1=> m₁ =  - √3

30°Step-by-step explanation:m₁ = Tanθ₁m₂ = Tanθ₂Tan (θ₂ - θ₁)  =  | (Tanθ₂ - Tanθ₁)/(1 +Tanθ₂Tanθ₁) |=> Tan (θ₂ - θ₁)  = | (m₂ - m₁)/(1 + m₂m₁) |√3x+y=1=> y = - √3x + 1=> m₁ =  - √3x+√3y=1

30°Step-by-step explanation:m₁ = Tanθ₁m₂ = Tanθ₂Tan (θ₂ - θ₁)  =  | (Tanθ₂ - Tanθ₁)/(1 +Tanθ₂Tanθ₁) |=> Tan (θ₂ - θ₁)  = | (m₂ - m₁)/(1 + m₂m₁) |√3x+y=1=> y = - √3x + 1=> m₁ =  - √3x+√3y=1=> y = - x/√3  + 1/√3

30°Step-by-step explanation:m₁ = Tanθ₁m₂ = Tanθ₂Tan (θ₂ - θ₁)  =  | (Tanθ₂ - Tanθ₁)/(1 +Tanθ₂Tanθ₁) |=> Tan (θ₂ - θ₁)  = | (m₂ - m₁)/(1 + m₂m₁) |√3x+y=1=> y = - √3x + 1=> m₁ =  - √3x+√3y=1=> y = - x/√3  + 1/√3=> m₂ = -1/√3

30°Step-by-step explanation:m₁ = Tanθ₁m₂ = Tanθ₂Tan (θ₂ - θ₁)  =  | (Tanθ₂ - Tanθ₁)/(1 +Tanθ₂Tanθ₁) |=> Tan (θ₂ - θ₁)  = | (m₂ - m₁)/(1 + m₂m₁) |√3x+y=1=> y = - √3x + 1=> m₁ =  - √3x+√3y=1=> y = - x/√3  + 1/√3=> m₂ = -1/√3=> Tanθ  = | ( -1/√3 - (-√3))/(1 + (-1/√3)( - √3)) |

30°Step-by-step explanation:m₁ = Tanθ₁m₂ = Tanθ₂Tan (θ₂ - θ₁)  =  | (Tanθ₂ - Tanθ₁)/(1 +Tanθ₂Tanθ₁) |=> Tan (θ₂ - θ₁)  = | (m₂ - m₁)/(1 + m₂m₁) |√3x+y=1=> y = - √3x + 1=> m₁ =  - √3x+√3y=1=> y = - x/√3  + 1/√3=> m₂ = -1/√3=> Tanθ  = | ( -1/√3 - (-√3))/(1 + (-1/√3)( - √3)) |=>  Tanθ  = |  (2/√3)/(2) |

30°Step-by-step explanation:m₁ = Tanθ₁m₂ = Tanθ₂Tan (θ₂ - θ₁)  =  | (Tanθ₂ - Tanθ₁)/(1 +Tanθ₂Tanθ₁) |=> Tan (θ₂ - θ₁)  = | (m₂ - m₁)/(1 + m₂m₁) |√3x+y=1=> y = - √3x + 1=> m₁ =  - √3x+√3y=1=> y = - x/√3  + 1/√3=> m₂ = -1/√3=> Tanθ  = | ( -1/√3 - (-√3))/(1 + (-1/√3)( - √3)) |=>  Tanθ  = |  (2/√3)/(2) |=> Tanθ  = 1/√3

30°Step-by-step explanation:m₁ = Tanθ₁m₂ = Tanθ₂Tan (θ₂ - θ₁)  =  | (Tanθ₂ - Tanθ₁)/(1 +Tanθ₂Tanθ₁) |=> Tan (θ₂ - θ₁)  = | (m₂ - m₁)/(1 + m₂m₁) |√3x+y=1=> y = - √3x + 1=> m₁ =  - √3x+√3y=1=> y = - x/√3  + 1/√3=> m₂ = -1/√3=> Tanθ  = | ( -1/√3 - (-√3))/(1 + (-1/√3)( - √3)) |=>  Tanθ  = |  (2/√3)/(2) |=> Tanθ  = 1/√3=> θ = 30°

30°Step-by-step explanation:m₁ = Tanθ₁m₂ = Tanθ₂Tan (θ₂ - θ₁)  =  | (Tanθ₂ - Tanθ₁)/(1 +Tanθ₂Tanθ₁) |=> Tan (θ₂ - θ₁)  = | (m₂ - m₁)/(1 + m₂m₁) |√3x+y=1=> y = - √3x + 1=> m₁ =  - √3x+√3y=1=> y = - x/√3  + 1/√3=> m₂ = -1/√3=> Tanθ  = | ( -1/√3 - (-√3))/(1 + (-1/√3)( - √3)) |=>  Tanθ  = |  (2/√3)/(2) |=> Tanθ  = 1/√3=> θ = 30°angle between lines√3x+y=1 and x+√3y=1 = 30°

Similar questions