Physics, asked by syedismailart, 10 months ago

Derive an expression for the various of acceleration due to gravity with height 'h' from the surface of earth?

Answers

Answered by arumugamabinaya123
1

Answer:

Explanation:Let a body PP of mass mm be situated at a depth hh below the earth's surface.

The gravitational force of attraction on a body inside a spherical shell is always zero. Therefore, the body PP experiences gravitational attraction only due to the inner solid sphere. The mass of this sphere is

M'=volume\times density=\cfrac { 4 }{ 3 } \pi { \left( { R }_{ e }-h \right) }^{ 3 }\rhoM

=volume×density=

3

4

π(R

e

−h)

3

ρ

where \rhoρ is mean density of the earth. Therefore, according to Newton's law of gravitation, the force of attraction on the body PP is

\cfrac { GM'm }{ { \left( { R }_{ e }-h \right) }^{ 2 } } =G\cfrac { \cfrac { 4 }{ 3 } \pi { \left( { R }_{ e }-h \right) }^{ 3 }\rho m }{ { \left( { R }_{ e }-h \right) }^{ 2 } }

(R

e

−h)

2

GM

m

=G

(R

e

−h)

2

3

4

π(R

e

−h)

3

ρm

=\cfrac { 4 }{ 3 } \pi G\left( { R }_{ e }-h \right) \rho m=

3

4

πG(R

e

−h)ρm

This force must be equal to the weight of the body mg'mg

, where g'g

is the acceleration due to gravity at a depth hh below the surface of the earth. Thus,

mg'=\cfrac { 4 }{ 3 } \pi G\left( { R }_{ e }-h \right) \rho m....(i)mg

=

3

4

πG(R

e

−h)ρm....(i)

Similarly, if a body be at the surface of the earth (h=0(h=0) where acceleration due to gravity is gg, then

mg=\cfrac { 4 }{ 3 } \pi G{ R }_{ e }\rho m....(ii)mg=

3

4

πGR

e

ρm....(ii)

Dividing eq.(i)(i) by (ii)(ii) we have

\Rightarrow \cfrac { g' }{ g } =\cfrac { { R }_{ e }-h }{ { R }_{ e } }⇒

g

g

=

R

e

R

e

−h

\Rightarrow g'=g\left( 1-\cfrac { h }{ { R }_{ e } } \right)⇒g

=g(1−

R

e

h

)

Answered by acsahjosemon40
1

Answer:

Answer:

Explanation:Let a body PP of mass mm be situated at a depth hh below the earth's surface.

The gravitational force of attraction on a body inside a spherical shell is always zero. Therefore, the body PP experiences gravitational attraction only due to the inner solid sphere. The mass of this sphere is

M'=volume\times density=\cfrac { 4 }{ 3 } \pi { \left( { R }_{ e }-h \right) }^{ 3 }\rhoM

=volume×density=

3

4

π(R

e

−h)

3

ρ

where \rhoρ is mean density of the earth. Therefore, according to Newton's law of gravitation, the force of attraction on the body PP is

\cfrac { GM'm }{ { \left( { R }_{ e }-h \right) }^{ 2 } } =G\cfrac { \cfrac { 4 }{ 3 } \pi { \left( { R }_{ e }-h \right) }^{ 3 }\rho m }{ { \left( { R }_{ e }-h \right) }^{ 2 } }

(R

e

−h)

2

GM

m

=G

(R

e

−h)

2

3

4

π(R

e

−h)

3

ρm

=\cfrac { 4 }{ 3 } \pi G\left( { R }_{ e }-h \right) \rho m=

3

4

πG(R

e

−h)ρm

This force must be equal to the weight of the body mg'mg

, where g'g

is the acceleration due to gravity at a depth hh below the surface of the earth. Thus,

mg'=\cfrac { 4 }{ 3 } \pi G\left( { R }_{ e }-h \right) \rho m....(i)mg

=

3

4

πG(R

e

−h)ρm....(i)

Similarly, if a body be at the surface of the earth (h=0(h=0) where acceleration due to gravity is gg, then

mg=\cfrac { 4 }{ 3 } \pi G{ R }_{ e }\rho m....(ii)mg=

3

4

πGR

e

ρm....(ii)

Dividing eq.(i)(i) by (ii)(ii) we have

\Rightarrow \cfrac { g' }{ g } =\cfrac { { R }_{ e }-h }{ { R }_{ e } }⇒

g

g

=

R

e

R

e

−h

\Rightarrow g'=g\left( 1-\cfrac { h }{ { R }_{ e } } \right)⇒g

=g(1−

R

e

h

)

Similar questions