Physics, asked by chandrakantkolikar, 1 month ago

derive an expression for work done by the gas in an isothermal process.​

Answers

Answered by 2005divy25
0

000009999990999999900000000000

Answered by BrainlyJossh
3

Answer:

Let us consider 1 mole of gas is enclosed in an isothermal container.

Let P1,P1,V1V1 and T be the initial pressure, initial volume, and temperature. As work is done, let the gas expand to P2,P2,V2V2 where P2P2 is the reduced pressure and V2V2 is the expanded volume.

Since the process is an Isothermal Process, the temperature remains constant. We know that work done is given by,

W=∫dWW=∫dW

⇒W=∫V2V1PdV________(1)⇒W=∫V1V2PdV________(1)

We have the relation PV=nRTPV=nRT

⇒PV=RT⇒PV=RT (∵n=1mole)(∵n=1mole) and R is the ideal gas constant.

⇒P=RTV⇒P=RTV

Substituting the value of P in equation 1,

we get

⇒W=RT∫V2V1dVV⇒W=RT∫V1V2dVV

⇒W=RT[lnV]V2V1⇒W=RT[ln⁡V]V1V2

⇒W=RT[lnV2−lnV1]⇒W=RT[ln⁡V2−ln⁡V1]

⇒W=RTlnV2V1⇒W=RTln⁡V2V1

∴W=2.303RTlog10V2V1∴W=2.303RTlog10V2V1

We know that for constant temperature,

P1P2=V2V1P1P2=V2V1

Thus, W=2.303RTlog10P1P2W=2.303RTlog10P1P2

Thus, work done by the gas in an isothermal process is given by the expression, W=2.303RTlog10P1P2W=2.303RTlog10P1P2.

Happy learning ☺!

Similar questions