Derive
cos2x=1-(tan)2x/1+(tan)2x
Answers
Answered by
3
LHS,
We have,
cos 2x = cos²x - sin²x
= (cos²x - sin²x) / 1
= (cos²x - sin²x) / (cos²x + sin²x)
= {cos²x[1-(sin² x/cos² x)]} / {cos²x[1+(sin²x/cos²x)]}
⇒ cos2x = (1 - tan²x) / (1 + tan²x)
= RHS
Hence Proved !!
Similar questions