Derive equations of motion for a particle moving in a plane and show that the motion can be resolved in two independent motion in mutually perpendicular directions
Answers
Answer:
Let the initial velocity of the particle be
The acceleration of the particle be
After time t if the velocity is and the displacement is
Then
Acceleration = rate of change of velocity
............ (1)
Average velocity
............(2)
Taking the dot product of eq (1) with itself
........ (3)
(1), (2) and (3) are required equations of motion
From equation (1)
Comparing the x and y component
And
From equation (2)
Comparing the x and y components
Similarly for equation (3) we can say that the motion can be resolved in two independents mutually perpendicular directions.
Hope this helps.
Let the initial velocity of the particle be
\vec u=u_x\hat i+u_y\hat j
u
=u
x
i
^
+u
y
j
^
The acceleration of the particle be
\vec a=a_x\hat i+a_y\hat j
a
=a
x
i
^
+a
y
j
^
After time t if the velocity is \vec v=v_x\hat i+v_y\hat j
v
=v
x
i
^
+v
y
j
^
and the displacement is \vec s
s
Then
Acceleration = rate of change of velocity
\vec a=\frac{\vec v-\vec u}{t}
a
=
t
v
−
u
\implies \vec a \times t=\vec v-\vec u⟹
a
×t=
v
−
u
\implies \boxed{\vec v=\vec u+\vec a t}⟹
v
=
u
+
a
t
............ (1)
Average velocity
=\frac{\vec u+\vec v}{2}=
2
u
+
v
\vec s=\frac{\vec u+\vec u+\vec a t}{2}\times t
s
=
2
u
+
u
+
a
t
×t
\implies \vec s=\frac{2\vec u t+\vec a t^2}{2}⟹
s
=
2
2
u
t+
a
t
2
\implies \boxed{\vec s=\vec u t+\frac{1}{2}\vec a t^2}⟹
s
=
u
t+
2
1
a
t
2
............(2)
Taking the dot product of eq (1) with itself
\vec v.\vec v=(\vec u+\vec a t).(\vec u+\vec a t)
v
.
v
=(
u
+
a
t).(
u
+
a
t)
\implies \vec v.\vec v=\vec u.\vec u+2\vec u.\vec a t+\vec a.\vec a t^2⟹
v
.
v
=
u
.
u
+2
u
.
a
t+
a
.
a
t
2
\implies \vec v.\vec v=\vec u.\vec u+2\vec a.(\vec u t+\frac{1}{2}\vec a t^2)⟹
v
.
v
=
u
.
u
+2
a
.(
u
t+
2
1
a
t
2
)
\implies \boxed{\vec v.\vec v=\vec u.\vec u+2\vec a.\vec s}⟹
v
.
v
=
u
.
u
+2
a
.
s
........ (3)
(1), (2) and (3) are required equations of motion
From equation (1)
\vec v=\vec u+\vec a t
v
=
u
+
a
t
v_x\hat i+v_y\hat j=(u_x\hat i+u_y\hat j)+(a_x\hat i+a_y\hat j) tv
x
i
^
+v
y
j
^
=(u
x
i
^
+u
y
j
^
)+(a
x
i
^
+a
y
j
^
)t
\implies v_x\hat i+v_y\hat j=(u_x\hat i+a_x\hat i t)+(u_y\hat j+a_y\hat j t⟹v
x
i
^
+v
y
j
^
=(u
x
i
^
+a
x
i
^
t)+(u
y
j
^
+a
y
j
^
t
Comparing the x and y component
v_x=u_x+a_xtv
x
=u
x
+a
x
t
And
v_y=u_y+a_ytv
y
=u
y
+a
y
t
From equation (2)
\vec s=\vec u t+\frac{1}{2}\vec a t^2
s
=
u
t+
2
1
a
t
2
s_x\hat i+s_y\hat j=(u_x\hat i+u_y\hat j) t+\frac{1}{2}(a_x\hat i+a_y\hat j) t^2s
x
i
^
+s
y
j
^
=(u
x
i
^
+u
y
j
^
)t+
2
1
(a
x
i
^
+a
y
j
^
)t
2
\implies s_x\hat i+s_y\hat j=(u_x t+\frac{1}{2}a_x t^2)\hat i+(u_y t+\frac{1}{2}a_y t^2)\hat j⟹s
x
i
^
+s
y
j
^
=(u
x
t+
2
1
a
x
t
2
)
i
^
+(u
y
t+
2
1
a
y
t
2
)
j
^
Comparing the x and y components
s_x=u_x t+\frac{1}{2}a_x t^2s
x
=u
x
t+
2
1
a
x
t
2
s_y=u_y t+\frac{1}{2}a_y t^2s
y
=u
y
t+
2
1
a mutually perpendicular directions.
Hope this helps.