Physics, asked by Missunique7384, 7 months ago

Derive f=1/2l√t/m dimensionally t is the tension f is the frequency l is length and m is the mass per unit length

Answers

Answered by nirman95
5

To derive:

 \boxed{f =  \dfrac{1}{2l}  \sqrt{ \dfrac{t}{m} } } \:  \:  \:  \:  \:  \:  \:  \: ......(dimensional \: analysis)

Derivation:

Let frequency be f be dependent on these quantities as follows :

 \therefore \: f \propto \:  {l}^{x}  \:  {t}^{y}  \:  {m}^{z}

Now , expressing them in terms of basic physical quantities :

  \implies\:  {T}^{ - 1}  \propto \:  {L}^{x}  \:  \times  {(ML{T}^{ - 2}) }^{y}  \:  \times  {(M{L}^{ - 1} )}^{z}

  \implies\:  {T}^{ - 1}  \propto \:  {M}^{(y + z)}  \times  {L}^{(x + y  - z)}  \times  {T}^{ - 2y}

So, comparing both sides:

1) \:  - 2y =  - 1 \\ 2) \: y + z = 0 \\ 3) \: x + y - z = 0

So, after solving these equations , we get:

1) \: x =  - 1 \\ 2) \: y =  \dfrac{1}{2}  \\ 3) \: z =  -  \dfrac{1}{2}

So, putting value of x , y , z :

 \therefore \: f \propto \:  {l}^{ - 1}  \:  {t}^{ \frac{1}{2} }  \:  {m}^{ -  \frac{1}{2} }

 \implies\: f  = \:k \:  \bigg(  {l}^{ - 1}  \:  {t}^{ \frac{1}{2} }  \:  {m}^{ -  \frac{1}{2} }  \bigg)

 \implies\: f  = \:k \:  \bigg(   \dfrac{1}{l}  \sqrt{ \dfrac{t}{m} } \bigg)

Hence , derived ✔️

Similar questions