Physics, asked by angel06171, 5 months ago

derive mathematical expression to find the weight of an object on moon in comparison with that on earth​

Answers

Answered by TheUnknownLily
175

 \red{❣︎} \huge{\mathtt{\blue{\underline{\underline{ANSWER}}}}}  \red{❣︎}

We Know That ,

 \implies g = \frac{GM}{R²}

also , W = mg

 \implies W =  \frac{GMm}{R²}

Let , mass of the object be m

Its weight on moon be  W_m

 \bf{Let \:the\: mass \:of \:Moon } = M_m

 \bf{And\: the \:Radius \:of \:moon} =  R_m

Applying Universal Law of Gravitation , weight of the obj. in moon will be  \longrightarrow

\implies {W_m} = G \frac{M_m\:×\:m}{R_m²} {\longrightarrow} ( 1 )

Let the weight of the same obj. on earth be W_e

 \bf{Mass \:of \:earth \:is \:M}

 \bf{Radius \:of \:earth\: is \:R}

\implies {W_e} = G  \frac{M\:×\:m}{R²} {\longrightarrow}  ( 2 )

 \therefore ( 1 ) , ( 2 )

\implies W_m = G \frac{7.36\:×\:10²²\:kg\:×\:m}{( 1.76\:×\:10⁶\:m)²}

 \implies W_m =   \bf{2.431 × 10¹⁰\: G × m} \longrightarrow ( 3 )

and

\implies W_e =  \bf{1.474 × 10¹¹\:G × m} \longrightarrow ( 4 )

now ,  \huge{\frac{3}{4}}

\implies \bold{\frac{W_m}{W_e}} =  \bold{\frac{2.431\:×\:10¹⁰}{1.474\:×\:10¹¹}} = 0.165 = \bold{\frac{1}{6}}

 \implies\bold{\frac{Weight\:of\:obj\:in\:moon}{weight\:of\:obj\:in\:earth}} = \bold{\frac{1}{6}}

\therefore  \sf{Weight\: of\:obj.\:in\:moon} =  \frac{1}{6} ×  \sf{its\: weight\: on\: earth}

 \boxed{\boxed{\boxed{\bf{PROVED}}}} \blacksquare{\tiny{BY}}\blacksquare  \boxed{\boxed{\boxed{\mathbb{@\:LILY}}}}

Answered by gurmanpreet1023
2

\huge\frak\pink{answer}

gravity

Explanation:

gravity is 900 psi power of weight

Similar questions