Derive Position-Time relation graphically.
Answers
Answer:
s=area of rectangle OACD+area of triangle ABC
s=area of rectangle OACD+area of triangle ABCs=OA×OD+1/2×AC×BC
s=area of rectangle OACD+area of triangle ABCs=OA×OD+1/2×AC×BCs=u×t+1/2×t×(v-u)
s=area of rectangle OACD+area of triangle ABCs=OA×OD+1/2×AC×BCs=u×t+1/2×t×(v-u)s=ut +1/2×t×(v-u). --------eq 1
s=area of rectangle OACD+area of triangle ABCs=OA×OD+1/2×AC×BCs=u×t+1/2×t×(v-u)s=ut +1/2×t×(v-u). --------eq 1a=v-u/t
s=area of rectangle OACD+area of triangle ABCs=OA×OD+1/2×AC×BCs=u×t+1/2×t×(v-u)s=ut +1/2×t×(v-u). --------eq 1a=v-u/tat=v-u
s=area of rectangle OACD+area of triangle ABCs=OA×OD+1/2×AC×BCs=u×t+1/2×t×(v-u)s=ut +1/2×t×(v-u). --------eq 1a=v-u/tat=v-uput value of v-u in equation 1
s=area of rectangle OACD+area of triangle ABCs=OA×OD+1/2×AC×BCs=u×t+1/2×t×(v-u)s=ut +1/2×t×(v-u). --------eq 1a=v-u/tat=v-uput value of v-u in equation 1s=ut +1/2×t×at
s=area of rectangle OACD+area of triangle ABCs=OA×OD+1/2×AC×BCs=u×t+1/2×t×(v-u)s=ut +1/2×t×(v-u). --------eq 1a=v-u/tat=v-uput value of v-u in equation 1s=ut +1/2×t×ats=ut +1/2 at^2
s=area of rectangle OACD+area of triangle ABCs=OA×OD+1/2×AC×BCs=u×t+1/2×t×(v-u)s=ut +1/2×t×(v-u). --------eq 1a=v-u/tat=v-uput value of v-u in equation 1s=ut +1/2×t×ats=ut +1/2 at^2HENCE PROVE