Derive s= ut+1/2 at2 and v2-u2=2as
Answers
Answered by
3
acceleration is taken as constant
we know a = dv/dt
dv = a dt
Integrating both sides with proper limits
\int\limits^u_v \, dv= \int\limits^0_t {a} \, dtv∫udv=t∫0adt

[v]^v_u=a[t]^t_0[v]uv=a[t]0t
v-u=atv−u=at
v=u+atv=u+at
second equation
a= dv/dt x dx/dx
a = v dv/dx
v dv = a dx
Integrating both sides with proper limits
\int\limits^v_u {v} \, dv = \int\limits^s_0 {a} \, dxu∫vvdv=0∫sadx
\int\limits^v_u {v} \, dv =u∫vvdv=
[\frac{v^2}{2}]^v_u =a[x]^s_0[2v2]uv=a[x]0s
v^{2}-u^{2} = 2asv2−u2=2as
we know a = dv/dt
dv = a dt
Integrating both sides with proper limits
\int\limits^u_v \, dv= \int\limits^0_t {a} \, dtv∫udv=t∫0adt

[v]^v_u=a[t]^t_0[v]uv=a[t]0t
v-u=atv−u=at
v=u+atv=u+at
second equation
a= dv/dt x dx/dx
a = v dv/dx
v dv = a dx
Integrating both sides with proper limits
\int\limits^v_u {v} \, dv = \int\limits^s_0 {a} \, dxu∫vvdv=0∫sadx
\int\limits^v_u {v} \, dv =u∫vvdv=
[\frac{v^2}{2}]^v_u =a[x]^s_0[2v2]uv=a[x]0s
v^{2}-u^{2} = 2asv2−u2=2as
Similar questions