Derive the expression for all
kinematic equations (equations of motion).
Answers
Answer:
Kinematics
Explanation:
Kinematics is the study of the motion of objects without concern for the forces causing the motion. These familiar equations allow students to analyze and predict the motion of objects, and students will continue to use these equations throughout their study of physics. A solid understanding of these equations and how to employ them to solve problems is essential for success in physics. This article is a purely mathematical exercise designed to provide a quick review of how the kinematics equations are derived using algebra.
Please mark me as brainliest.
Answer:
Derivation of the Equations of Motion
v = u + at
Let us begin with the first equation, v=u+at. This equation only talks about the acceleration, time, the initial and the final velocity. Let us assume a body that has a mass “m” and initial velocity “u”. Let after time “t” its final velocity becomes “v” due to uniform acceleration “a”. Now we know that:
Acceleration = Change in velocity/Time Taken
Therefore, Acceleration = (Final Velocity-Initial Velocity) / Time Taken
Hence, a = v-u /t or at = v-u
Therefore, we have: v = u + at
- v² = u² + 2as
We have, v = u + at. Hence, we can write t = (v-u)/a
Also, we know that, Distance = average velocity × Time
Therefore, for constant acceleration we can write: Average velocity = (final velocity + initial velocty)/2 = (v+u)/2
Hence, Distance (s) = [(v+u)/2] × [(v-u)/a]
or s = (v² – u²)/2a
or 2as = v² – u²
or v² = u² + 2as
- s = ut + ½at²
Let the distance be “s”. We know that
Distance = Average velocity × Time. Also, Average velocity = (u+v)/2
Therefore, Distance (s) = (u+v)/2 × t
Also, from v = u + at, we have:
s = (u+u+at)/2 × t = (2u+at)/2 × t
s = (2ut+at²)/2 = 2ut/2 + at²/2
or s = ut +½ at²
This is your answer.
Hope this helps you!
Explanation: