Derive the expression for young's modulus for composites for isostrain and isostress conditions
Answers
Until the late 19th century, Newtonian physics dominated the scientific worldview. However, by the early 20th century, physicists discovered that the laws of classical mechanics do not apply at the atomic scale.
The photoelectric effect could not be rationalized based on existing theories of light, as an increase in the intensity of light did not lead to the same outcome as an increase iHowever, by the early 20th century, physicists discovered that the laws of classical mechanics are not applicable at the atomic scale, and experiments such as the photoelectric effect completely contradicted the laws of classical physics. As a result of these observations, physicists articulated a set of theories now known as quantum mechanics. In some ways, quantum mechanics completely changed the way physicists viewed the universe, and it also marked the end of the idea of a clockwork universe (the idea that universe was predictable).
Electromagnetic radiation
Electromagnetic (EM) radiation is a form of energy with both wave-like and particle-like properties; visible light being a well-known example. From the wave perspective, all forms of EM radiation may be described in terms of their wavelength and frequency. Wavelength is the distance from one wave peak to the next, which can be measured in meters. Frequency is the number of waves that pass by a given point each second. While the wavelength and frequency of EM radiation may vary, its speed in a vacuum remains constant at 3.0 x 108 m/sec, the speed of light. The wavelength or frequency of any specific occurrence of EM radiation determine its position on the electromagnetic spectrum and can be calculated from the following equation:
[latex]c=\lambda\nu[/latex]
where c is the constant 3.0 x 108 m/sec (the speed of light in a vacuum), [latex]\lambda[/latex] = wavelength in meters, and [latex]\nu[/latex]=frequency in hertz (1/s). It is important to note that by using this equation, one can determine the wavelength of light from a given frequency and vice versa.
Wavelength of EM radiationThe distance used to determine the wavelength is shown. Light has many properties associated with its wave nature, and the wavelength in part determines these properties.
plzzzz Friend mark as brainliest plzzzzzzzz....