Math, asked by smuni, 1 year ago

derive the formula for sigma n power 4

Answers

Answered by Yuichiro13
65
Heya

Using Binomial Expansion :
 {x}^{5}  -  {(x - 1)}^{5}  = 5 {x}^{4}  - 10 {x}^{3}  + 10 {x}^{2}  - 5x + 1

Summing the R.H.S. and L.H.S. from n to 1 :

 {n}^{5}  = 5 \sum  {n}^{4}  - 10\sum  {n}^{ 3} + 10\sum  {n}^{2} - 5\sum  {n} + n

Putting the formula for the sums we know about :

\sum  {n}^{3} =  {( \frac{n(n + 1)}{2} )}^{2}

\sum  {n}^{2} =  \frac{n(n + 1)(2n + 1)}{6}

\sum  {n} =  \frac{n(n + 1)}{2}


Putting these formula in above relation and simplifying :

\sum  {n}^{4} =  \frac{n(n + 1)(2n + 1)(3 {n}^{2}  + 3n - 1)}{30}
Similar questions