Physics, asked by BrainIyMSDhoni, 5 months ago

Derive the moment of inertia of

(i)Thin,uniform spherical shell
(ii)Solid,uniform sphere

Explain each step and with proper explanation with correct integration .​

Answers

Answered by shadowsabers03
13

(i) Moment of Inertia of a Thin Uniform Spherical Shell

Consider a thin uniform spherical shell of radius \sf{R} and mass \sf{M} (Figure 1). Consider an elemental ring of radius \sf{r} and mass \sf{dM} whose center is at a distance \sf{x} from the center of the shell.

Here \sf{dl} is edge width of ring which subtends an angle \sf{d\theta} at center of the shell. So,

\sf{\longrightarrow dl=R\ d\theta}

From the triangle,

\sf{\longrightarrow r=R\sin\theta}

The surface area of the ring,

\sf{\longrightarrow dA=2\pi r\ dl}

\sf{\longrightarrow dA=2\pi R^2\sin\theta\ d\theta}

Since the shell is uniform,

\sf{\longrightarrow\dfrac{M}{A}=\dfrac{dM}{dA}}

\sf{\longrightarrow dM=\dfrac{M}{4\pi R^2}\cdot2\pi R^2\sin\theta\ d\theta}

\sf{\longrightarrow dM=\dfrac{1}{2}\,M\sin\theta\ d\theta}

The moment of inertia of the ring about an axis passing through its center and perpendicular to the plane is,

\sf{\longrightarrow dI=dM\cdot r^2}

\sf{\longrightarrow dI=\dfrac{1}{2}\,M\sin\theta\ d\theta\,(R\sin\theta)^2}

\sf{\longrightarrow dI=\dfrac{1}{2}\,MR^2\sin^3\theta\ d\theta}

Then the moment of inertia of the whole shell is,

\displaystyle\sf{\longrightarrow I=\dfrac{1}{2}\,MR^2\int\limits_0^{\pi}\sin^3\theta\ d\theta}

Solving the integral,

\displaystyle\sf{\longrightarrow\int\limits_0^{\pi}\sin^3\theta\ d\theta=\int\limits_0^{\pi}\sin^2\theta\cdot\sin\theta\ d\theta}

\displaystyle\sf{\longrightarrow\int\limits_0^{\pi}\sin^3\theta\ d\theta=-\int\limits_0^{\pi}\left(1-\cos^2\theta\right)\cdot-\sin\theta\ d\theta}

Take \sf{u=\cos\theta.} Then,

\displaystyle\sf{\longrightarrow\int\limits_0^{\pi}\sin^3\theta\ d\theta=-\int\limits_1^{-1}\left(1-u^2\right)\ du}

\displaystyle\sf{\longrightarrow\int\limits_0^{\pi}\sin^3\theta\ d\theta=\dfrac{4}{3}}

Hence,

\displaystyle\sf{\longrightarrow I=\dfrac{1}{2}\,MR^2\cdot\dfrac{4}{3}}

\displaystyle\sf{\longrightarrow\underline{\underline{I=\dfrac{2}{3}\,MR^2}}}

(ii) Moment of Inertia of a Solid Uniform Sphere

Consider a solid uniform sphere of radius \sf{R} and mass \sf{M} (Figure 2). Consider an elemental disc of radius \sf{r} and mass \sf{dM} whose center is at a distance \sf{x} from the center of the shell.

From the triangle,

\sf{\longrightarrow x=R\cos\theta}

\sf{\longrightarrow dx=-R\sin\theta\ d\theta}

and,

\sf{\longrightarrow r=R\sin\theta}

Volume of disc,

\sf{\longrightarrow dV=\pi r^2\ dx}

\sf{\longrightarrow dV=-\pi R^3\sin^3\theta\ d\theta}

Since the sphere is uniform,

\sf{\longrightarrow\dfrac{M}{V}=\dfrac{dM}{dV}}

\sf{\longrightarrow dM=\dfrac{M}{\dfrac{4}{3}\pi R^3}\cdot -\pi R^3\sin^3\theta\ d\theta}

\sf{\longrightarrow dM=-\dfrac{3}{4}\,M\sin^3\theta\ d\theta}

Moment of inertia of the disc about an axis passing through its center and perpendicular to the plane is,

\displaystyle\sf{\longrightarrow dI=\dfrac{1}{2}\,dM\cdot r^2}

\sf{\longrightarrow dI=-\dfrac{3}{8}\,M\sin^3\theta\ d\theta\cdot(R\sin\theta)^2}

\sf{\longrightarrow dI=-\dfrac{3}{8}\,MR^2\sin^5\theta\ d\theta}

Then moment of inertia of the whole sphere will be,

\displaystyle\sf{\longrightarrow I=\int\limits_{\pi}^0-\dfrac{3}{8}\,MR^2\sin^5\theta\ d\theta }

\displaystyle\sf{\longrightarrow I=\dfrac{3}{8}\,MR^2\int\limits_0^{\pi}\sin^5\theta\ d\theta }

Solving the integral,

\displaystyle\sf{\longrightarrow \int\limits_0^{\pi}\sin^5\theta\ d\theta=\int\limits_0^{\pi}\sin^4\theta\cdot\sin\theta\ d\theta}

\displaystyle\sf{\longrightarrow \int\limits_0^{\pi}\sin^5\theta\ d\theta=-\int\limits_0^{\pi}(1-\cos^2\theta)^2\cdot-\sin\theta\ d\theta}

Take \sf{u=\cos\theta.} Then,

\displaystyle\sf{\longrightarrow \int\limits_0^{\pi}\sin^5\theta\ d\theta=-\int\limits_1^{-1}\left(1-u^2\right)^2\ du}

\displaystyle\sf{\longrightarrow \int\limits_0^{\pi}\sin^5\theta\ d\theta=\dfrac{16}{15}}

Hence,

\displaystyle\sf{\longrightarrow I=\dfrac{3}{8}\,MR^2\cdot\dfrac{16}{15}}

\displaystyle\sf{\longrightarrow\underline{\underline{I=\dfrac{2}{5}\,MR^2}}}

Attachments:

BrainIyMSDhoni: Great :)
Answered by tammarapusrinivasara
0

Answer:

please drop me some thanks please

Attachments:
Similar questions