Physics, asked by kushagra19sep, 10 months ago

Derive the relation between alpha and beta and alpha and gama in thermal expansion heat and thermo . Explain fully please

Answers

Answered by manavjaison
1

Heya friend,

Here we go:

α = coefficient of linear expansion (alpha)

β = coefficient of superficial (beta)

γ = coefficient of cubical expansion (gamma)

Now,

========================================================

For the relation between α and β :-

Consider a rectangular lamina of

length = a

breadth = b

So,

area of rectangular lamina (s) = ab

On heating the lamina through 1 K,

change in length = α a                           [α = Δ l  / l ΔT

change in breath = β b                           α l ΔT = Δ l , Here, Δt = 1 K

                                                               so, α l = Δ l ⇒ α a = Δ l ]

So,

New length = original length + change in the length

                   = a + αa ⇒  a(1+α)

New breadth = original breadth + change in the breadth

                      = b + βb ⇒ b(1+β)

New area (s_{0}) = ab (1+\alpha )^{2}

Now,

Δs = s_{0} - s

   = ab(1+\alpha )^{2} - ab

   = ab[1 + \alpha ^{2} + 2\alpha] - ab

Now,

\alpha ^{2} is <<< as compared to \alpha ,

So,

Δs = ab [1 + 2\alpha] - ab

    = 2\alphaab

Now, we know,

\beta = Δs / sΔT

\beta  = \frac{2\alpha ba}{(ab) 1}

β = 2α

========================================================

For the relation between α and γ

Consider a cubical lamina of

length = a

breadth = b

height = c

So,

Volume = abc

On heating through 1 K,

change in length = \alpha a

change in breadth = \alpha b

change in height = \alpha c

New length = a + \alpha a = a(1+\alpha)

New breadth = b + \alphab = b(1+\alpha)

New height = c +\alphac  = c(1+\alpha)

New volume = abc (1+\alpha )^{3}

Δv = Nev volume - original volume

    =  abc(1+\alpha )^{3} - abc

    = abc [1+\alpha ^{3}+3 \alpha ^{2} +3\alpha] - abc

   

Now,

\alpha^{2}, \alpha ^{3} are too small , so they can be neglected

So,

Δv = abc (1 + 3α) - abc

    = abc + 3αabc - abc

    = abc3α

Now,

γ = Δv / vΔT

  = \frac{abc3\alpha }{(abc)1}                   [ΔT = 1 K]

  = 3α

γ = 3α

So,

β = 2α

γ = 3α

THANKS !

#BAL #answerwithquality

Similar questions