Science, asked by abhaysingh5584, 11 months ago

derive the relations of three equations of motion. a) v = u + at b) s = ut + 1/2 at^2 c) v^2 = u^2 = 2as 2​

Answers

Answered by amitkumar44481
56

Solution :

\tt v = u + at.

We have,

 \tt\implies \vec{a} =  \frac{ \Delta \:  v}{ \Delta  \:  t} \\ \tt\implies \vec{a} =  \frac{dv}{dt}  \\ \tt dv =  \vec{a} \: dt.

\tt\implies \int dv =  \int a \: dt \\ \implies  \int \limits _{u}^{v} dv =  \int \limits _{0}^{t}  a \: dt

Here, acceleration be constant.

so,

\tt \implies\int \limits _{u}^{v}dv = a \int \limits _{0}^{t}dt \\

 \tt\implies [v]_{u}^{v} = a[t]_{0}^{t}

 \tt\implies v - u = a(t - 0) \\ \tt\boxed{ v = u + at.}

Hance Proved.

Other part provide in attachment.

Some information :

  • v= u + at.
  • s = ut + 1/at².
  • v² = u² + 2as.
Attachments:
Similar questions