derive the relationship between torque and angular momentum
Answers
Answer:
Explanation:
The relationship between torque and angular momentum can be derived from Newton's second law for rotational motion. The equation for torque is given by:
τ = I * α,
where τ is the torque, I is the moment of inertia and α is the angular acceleration.
The equation for angular momentum is given by:
L = I * ω,
where L is the angular momentum and ω is the angular velocity.
Taking the derivative of angular momentum with respect to time, we have:
dL/dt = d(I * ω) / dt = I * dω/dt = I * α
Comparing this with the equation for torque, we see that:
dL/dt = τ
So the derivative of angular momentum with respect to time is equal to the torque applied to an object. This relationship between torque and angular momentum states that a torque applied to an object will cause a change in its angular momentum.