Derive the velocity-position equation of motion (v2=u2+2aS) graphically (with the help of a velocity-time graph).
Answers
Answer:
need to read an explained answer.
Explanation:
Velocity–Time graph to derive the equations of motion.
We have just seen that the distance travelled s by a body in time t is given by the area of the figure OABC which is a trapezium.
In other words,
Distance travelled, s = Area of trapezium OABC
Distance travelled =Area of trapezium
Now, OA + CB = u + v and OC = t.
Putting these values in the above relation, we get
------- (7)
We now want to eliminate t from the above equation.
This can be done by obtaining the value of t from the first equation of motion.
Thus, v = u + at (First equation of motion)
And, at = v – u or
Now, putting this value of t in equation (7) above, we get:
or 2as = v2 – u2 [because (v + u) × (v – u) = v2 – u2]
or v2 = u2 + 2as
This is the third equation of motion.