Chemistry, asked by ambaji2678, 11 months ago

Derive van't hoff solution e​

Answers

Answered by premmanu
16

this is your answer in the above photo.

mark me as brainlist.

Attachments:
Answered by Anonymous
9

Van't hoff factor (i)

It tells us about relationship between normal and colligative properties and abnormal colligative properties.

  • If i = 1 ⠀⠀⠀⠀Neither dissociation nor association

  • If i > 1 ⠀⠀Dissociation will occur

  • If i > 1 ⠀⠀Association will occur

Dissociation of Solute

{\sf Colligative\: Property\:\:\:\:\alpha\:\:\:\:\dfrac{1}{Molecular\: weight\:of\: Solute} }

Calculation of 'i'

{\sf \:\:\:\:\:\:\:A_xB_y\:\:→\:\:xA^{+y}+yB^{x-}}

Initially ⠀⠀⠀⠀1 mol ⠀⠀⠀x\alpha ⠀⠀⠀y\alpha

After dissociation ⠀⠀(1 - ∝) ⠀⠀x∝ ⠀y∝

{\sf Total\: number\:of\: Solute\: particles=1-\alpha+x\alpha+y\alpha }

\implies{\sf 1-\alpha+(x+y)\alpha}

\implies{\sf 1-\alpha+n\alpha }

{\boxed{\sf i=\dfrac{No.\:of\: particles\: after\: dissociation}{No.\:of\: particles\: before\: dissociation} }}

\implies{\sf \dfrac{1-\alpha+n\alpha}{1} }

\implies{\sf i=1-\alpha+n\alpha}

Where is Dissociation

{\boxed{\boxed{\sf \red{\alpha=\dfrac{(i-1)}{(n-1)}}}}}

  • For strong electrolyte

∝ = 1 or 100%

then , n = i

Example :-

NaCl => i = 2

Association of Solute :

Calculation of 'i'

\large{\sf \:\:\:\:\:nA\:\: →\:\:[A]_n  }

Initially ⠀⠀⠀⠀1 \huge{→}⠀⠀0

After association ⠀(1 - ∝) \huge{→} \sf{\dfrac{\alpha}{n}}

Total number of Solute particles

\implies{\sf 1-\alpha+\dfrac{\alpha}{n}}

{\boxed{\sf i=\dfrac{No.\:of\: particles\:after\: Dissociation}{No.\:of\: particles\:before\: association}}}

\implies{\sf i=\dfrac{1-\alpha+\dfrac{\alpha}{n}}{1}}

\implies{\sf i=1-\alpha+\dfrac{\alpha}{n}}}

∝ = degree of association

n = Number of Solute particles which are associated

{\boxed{\boxed{\sf \red{\alpha=\dfrac{1-i}{1-\dfrac{1}{n}}}}}}

  • If ∝ = 100% or 1 or ∝ is not specified {\boxed{\sf i=\dfrac{1}{n} }}

Similar questions