Math, asked by Rythm14, 1 year ago

Derive Velocity - time equation by calculus method.

Answers

Answered by Anonymous
179

 \textbf{ \large{ \underline{ \: Velocity-time equation  : -  \: }}}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (\textsf{v = u  + at})

Proof - Suppose an object moving with uniform acceleration 'a' if initial velocity of object is 'u' at time 't' = 0 after time 't' final velocity of object is 'v'.

The small change in velocity is dv in time dt. Therefore acceleration will be ,

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \text{a}  =  \frac{ \text{dv}}{ \text{dt}}  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \text{a  dt = dv}  -  -  - (1)

Integrating eq (1) over limit of time t = 0 to t from velocity u to v .

\displaystyle \int\limits_{0}^{ \text{t}}\text{a \: dt }\:  = \displaystyle \int\limits_{ \text{u}}^{ \text{v}}\text{ dv} \\  \\  \text{a}\displaystyle \int\limits_{0}^{ \text{t}}\text{ dt } \:  = \displaystyle \int\limits_{ \text{u}}^{ \text{v}}\text{ dv} \\  \\   \text{a} \bigg[  \text{t}  \bigg] _{0} ^{ \text{t}} \:   = \bigg[  \text{v}  \bigg] _{u} ^{ \text{v}}  \\  \\  \text{a}\bigg[  \text{t - 0}  \bigg] \:  =  \bigg[  \text{v - u}  \bigg]  \\  \\  \text{at \:  =  v - u} \\  \\  \rightarrow \: \text{v\:  =   u + at}

  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: (\textsf{v = u  + at})


Anonymous: Nice answer :)
Anonymous: Thanks Bhai :)
Answered by Anonymous
60

Answer:

Derivation of  velocity - time .

⇒ v = u + a t

Also known as first equation of motion .

Step-by-step explanation :

We know change in velocity in unit time is known as acceleration .

i.e.

\displaystyle{a=\dfrac{dv}{dt} }\\\\\\\displaystyle{a \ dt=dv}

Integrating both side

\displaystyle{\int\limits\,a \ dt=dv}\int\limits\, dx

Applying limit for time and velocity

For velocity ;

Let say lower limit = u

Final limit = v

For time

Let say lower limit = 0

Final limit = t

\displaystyle{\int\limits^t_0 {a} \,dt=\int\limits^v_u {} \ dv}\\\\\\\displaystyle{a[t]^t_0=[v]^v_u}\\\\\\\displaystyle{at=v-u}\\\\\\\displaystyle{v=u+at}

Hence , derive velocity - time equation by calculus method.


Rythm14: tq :)
Anonymous: pleasure : )
Anonymous: Hehe :)
Similar questions