Describe how to measure plant diversity in your locality ? HALF A PAGE AND I WILL RATE YOU BRAINIEST IF YOU ARE WORTH IT
Answers
Measuring biodiversity on the genetic level requires that researchers map the genes and chromosomes of an individual organism and then compare them to the genetic make-up of the larger population. It is genetic diversity which causes tulips to be different colors and different heights. Typically, researchers measure genetic diversity by counting how often certain genetic patterns occur. Another method of measuring genetic diversity works in the reverse: researchers evaluate the differences in physical appearance between individuals then attribute these traits to the most likely genetic roots. Mapping diversity at the genetic level is currently the most accurate measure of biodiversity, although it can be costly and time consuming and, thus, impractical for evaluating large ecosystems. It is most often used to examine managed populations or agricultural crops which can allow for selective breeding of the most desirable traits.
Measuring the diversity of a species generally incorporates estimates of “richness.” Also referred to as alpha-diversity, species richness is a common way of measuring biodiversity and involves counting the number of individuals – or even families – in a given area. Researchers have created several indices which measure species biodiversity, the most popular are the Simpson Index and the Shannon Index. These indices focus on the relative species richness and abundance and/or the pattern of species distribution. The Simpson Index takes into account the number of species present and their relative abundance in proportion to the total population. The Shannon Index, originally developed for use in information science, accounts for the order or abundance of a species within a sample plot. The Shannon Index is often used for identifying areas of high natural or human disturbance.
There are also many challenges when measuring species diversity. The greatest of which is a lack of available data. Conducting a full count of the number of species in an ecosystem is nearly impossible, so researchers must use sample plots at a variety of sites but must avoid repetitive counting. Oftentimes, information is not compiled in one specific place, a problem that can lead to an overlap in the naming of species. Another limitation is an inconsistency in treating the definition of species: what one scientist may classify as a new species another may not [for more, see Classifying Species].
At the ecosystem-level, measures of biodiversity are often used to compare two ecosystems or to determine changes over time in a given region. Describing changes in biodiversity within or between ecosystems is called beta-diversity. Measures of beta-diversity indicate the difference in species richness between two different habitats or within a single community at different points in time. The resulting number indicates to researchers whether there is any overlap in the species found in each group. Gamma-diversity, on the other hand, estimates the total biodiversity within an entire region. To arrive at a total estimate, researchers may set up sample plots around the region and count all species within the plots. The sizes of the plots can vary depending on the physical characteristics of the locale. For example, plots in northern forests may be as large as a hectacre whereas in dense rainforest a plot might only be a few meters. Another indicator of biodiversity which researchers often track and measure are keystone species, which are integral to ecosystem processes.
Measuring biodiversity on an ecosystem level is thought to be a better way of looking at the health of the entire system, rather than the health of a particular species. However, it faces many of the same challenges measuring species and genetic diversity do – primarily in cost and the lack of standardization. Researchers have only begun taking measurements; this further limits their ability to identify trends since ecosystems tend to change slowly over time. This absence of long-term scientific data remains a particular challenge.
Counting animals and plants, mapping genes, and systematically comparing ecosystems may seem like a lot of trouble for a number that is – ultimately – an estimate. However, the numbers matter. In the field of conservation, biodiversity is often a consideration within an area; being able to quantify what is being conserved is imperative to good planning and management. Labeling a species or ecosystem “diverse” becomes relative; an estimate of biodiversity will have recognizable limitations, like those of imperfect sampling, but will give a comparison or point of reference. The creation of indices gives scientists a standardized tool with which to compare both ecosystem and species health. Therefore, although exact diversity numbers are difficult to yield, knowing how biological resources are distributed within a community can be extremely beneficial in determining both short- and long-term trends.