determinant x sin theta cos theta minus sin theta minus 1 cos theta 1 x is equal to 8
Answers
Answered by
2
∣∣xsinθcosθ−sinθ−x1cosθ1x∣∣
∣∣=8|xsinθcosθ−sinθ−x1cosθ1x|=8
Expanding along R1, we get
x(−x2−1)−sinθ(−xsinθ−cosθ)+cosθ(−sinθ+xcosθ)=8x(−x2−1)−sinθ(−xsinθ−cosθ)+cosθ(−sinθ+xcosθ)=8
⇒−x3−x+xsin2θ+sinθcosθ−sinθcosθ+xcos2θ=8⇒−x3−x+xsin2θ+sinθcosθ−sinθcosθ+xcos2θ=8
⇒−x3−x+x(sin2θ+cos2θ)=8⇒−x3−x+x(sin2θ+cos2θ)=8
⇒−x3−x+x=8⇒−x3−x+x=8
⇒x3+8=0⇒x3+8=0
⇒(x+2)(x2−2x+4)=0⇒(x+2)(x2−2x+4)=0
⇒x+2=0[∵x2−2x+4>0∀x]⇒x+2=0[∵x2−2x+4>0∀x]
⇒x=−2⇒x=−2
Similar questions