Math, asked by kushagrswastik5595, 5 months ago

Determination and comparison of area bounded by a known curve

Answers

Answered by rjayanthjhcsclass6
4

Answer:

Integration - The Trapezium Rule / Trapezoidal Rule or Trapezoid Rule

The area between a function and the x-axis can be calculated by integration provided that the function in question can be integrated by known techniques. Sometimes we come across functions which cannot be integrated, though. In such situations, we use the Trapezium Rule to deal with it. The Trapezium Rule never gives the exact area, but an approximate value of the area.

The technique involves the division of the area into a finite number of steps of equal width. If the width is narrow enough, each strip can be treated as a trapezium.

Trapezium Rule General

Step-by-step explanation: Please give me a like if you find that this answer is helpful to you

Answered by priancaaarav
1

Answer:

We conclude that the area under the curve y = f(x) from a to b is given by the definite integral of f(x) from a to b. f(x)dx. f(x)dx when the curve lies entirely above the x-axis between a and b. Calculate the area bounded y = x−1 and the x-axis, between x = 1 and x =

Similar questions