Math, asked by rajnimohon12, 2 months ago

Determine (8x)x , if \9^{x+2} = 240+9x.

Answers

Answered by Anonymous
98

\large\bold\pink{\: \: \: Topic:~ Laws~ of~ exponents}

Given:

  • \sf{9^{x+2} = 240 + 9^{x}}

To Find:

  • Value of x ?

Solution:

\large\implies\sf{\: \:  \: \: 9^{x} \times 9^{2} - 9^{x} = 240}

\large\implies\sf{\: \: \: \: 9^{x} (81-1) = 240}

\large\implies\sf{\: \: \: \: 80 \times 9^{x} = 240 }

\large\implies\sf{\: \: \: \: 9^{x} = \frac{240}{80} = 3}

\large\implies\sf{\: \: \: \: 3^{2^{x}} = 3}

\large\implies\sf{\: \: \: \: 2x = 1 }

\large\implies\sf{\: \: \: \: x = \frac{1}{2} }

\large\therefore\sf{\: \: \: \: (8x)^{x} = (8 \times \frac{1}{2})^{\frac{1}{2}} = 4^{\frac{1}{2}} = (2^{2}^{\frac{1}{2}} = 2^{2 \times \frac{1}{2}} = 2^{1} = 2}

\large{\underline{\pmb{\mathsf{Hence,~ Value~ of~ x~ is~ 2.}}}}

_________________________________

Hope Helps :)

Note: Refer the answer from website to have clear explanation!

Question Link: https://brainly.in/question/42466136

Similar questions