Math, asked by jeenaljain1841, 2 months ago

determine a and b, if 4+3√5 divided by 4-3√5 = a+b√5​

Answers

Answered by plutonic
1

Answer:

a = -\frac{61}{29}\\\\b = -\frac{21}{29}

Step-by-step explanation:

\frac{4+3\sqrt{5}}{4-3\sqrt{5}}

Rationalising the denominator by multiplying by the conjugate of the denominator in both numerator and denominator.

\frac{(4+3\sqrt{5})(4+3\sqrt{5})}{(4-3\sqrt{5})(4+3\sqrt{5})}

Using the formula a^{2} - b^{2} = (a+b)(a-b)

\frac{(4+3\sqrt{5})^{2} }{16 - 45}

Using the formula (a+b)^{2} = a^{2} + b^{2} + 2ab

-\frac{16+45+24\sqrt{5}}{29} = a + b\sqrt{5}

(-\frac{61}{29}) + (-\frac{21}{29})\sqrt{5} = a+b\sqrt{5}

Comparing LHS and RHS we get,

a = -\frac{61}{29}\\\\b = -\frac{21}{29}

Similar questions