Math, asked by flor10, 1 year ago

Determine algebraically whether the function is even, odd, or neither even nor odd.
f(x)= -3x^4 - 2x - 5
a. Neither
b. Even
c. Odd

Answers

Answered by mysticd
11

 Given \: f(x) = -3x^{4} - 2x - 5\: ---(1)

 i ) f(-x) = -3(-x)^{4} - 2(-x) - 5 \\= -3x^{4} + 2x - 5 \neq f(x) , \\\pink {(The \: function \:is \:not \:even)}

ii ) -f(x) =  -(-3x^{4} -2x - 5 ) \\= 3x^{4} + 2x +5

 f(-x) \neq -f(x) ,\\\pink { ( The \: function \:is \:not \:odd )}

 Therefore .,\\ i )f(-x) \neq f(x) \:and \\ii ) f(-x) \neq -f(x) , \\\pink {( the \: function \:is \: neither \:even \:nor \:odd )}

 Option \: \green { (a) } \:is \: correct.

•••♪

Similar questions