Math, asked by Fhdjfjfj4726, 1 year ago

Determine an ap whose third tearm is 9 and when fifth tearm is substract from 8th tearm, we get 6

Answers

Answered by wajeed810
2

Answer:

Step-by-step explanation:

third term of ap is 9 and fifth term is subtracted from 8th term we get 6

means,

               8 - [a+(5-1)] d= 6

                   a + 4d = 8-6

                    a + 4d = 2    ⇒a5      (take this as equation 1)

and  ,           a3 = a + 2d = 9    (take this as equation2)

                   

solve equation 1 and 2

                                         a + 4d = 2

                                        a + 2d  = 9

                                   ...................................

we get,                             2d = -7

                                           ∴d = -7/2

         now put d value in equation 1 we get,

             

                    a + 4d = 2

                    a = 14 + 2

                    ∴a = 16

hence,

               a1  = 16

               a2 = a+d

                      =16+ (-7/2) ⇒  25/2

                 a3 = 9

∵ the numbers ar 16,25/2,9..........

∴The numbers form an AP

#HOPE ANSWER IS HELPFUL #

*****#MARK AS BRAINLIEST#******

Similar questions