Determine if it is possible to draw ∆PQR with side PQ=11cm,QR=5cm,PR=5cm
Answers
Answer:
In a triangle PQR, PQ =8cm and QR= 7cm. The area of the triangle is 17cm^ 2. Calculate the two possible values of <PQR. One I found 37.3 deg, how to find the 2nd one?
Area of PQR = (PQ*QR/2)*sin PQR, or
17 = (8*7/2)*sin PQR, or
sin PQR = 17*2/(8*7) = 0.607142857, or
<PQR = 37.38319842 deg.
We can find PR^2 = PQ^2+QR^2–2*PQ*QR cos PQR
= 8^2+7^2–2*8*7*cos 37.38319842
= 64+49–112*0.794592695
= 113–88.99438184
= 24.00561816, or
PR = 4.899552853 cm
Area of PQR = 17 = (QR*QR/2)*sin PRQ
=(7*4.899552853/2)*sin PRQ, or
sin PRQ = 17/(7*4.899552853/2) = 0.991344108
<PRQ = arc sin 0.991344108 = 82.45590259 deg
<QPR = 180 - 82.45590259 - 37.38319842 = 60.16089899 deg
<QPR = 60.16089899 deg and <PRQ = 82.45590259 deg
Another value of <PQR = 180 -37.38319842 = 142.6168016 deg.