Math, asked by khannasreen007, 1 year ago

Determine if the points (1,5), (2,3) and (-2,-11) are collinear

Answers

Answered by 8290geet
16
when three points are collinear then it's determinate value is also zero
Attachments:
Answered by Anonymous
20

\bf\huge\boxed{\boxed{\bf\huge\:Hello\:Mate}}}



\bf\huge Let A(1 , 5) , \: B(2 , 3) , \: C(-2 , -11)




\bf\huge AB= \sqrt{(2 - 1)^2 + (3 - 5)^2}




\bf\huge = \sqrt{1^2 + (-2)^2}




\bf\huge = \sqrt{1 + 4} = \sqrt{5}




\bf\huge BC = \sqrt{(-2 - 2)^2 + (-11 - 3)^2}




\bf\huge BC = \sqrt{(-4)^2 + (-14)^2}




\bf\huge BC = \sqrt{16 + 196}




\bf\huge BC = \sqrt{212}




\bf\huge AB = \sqrt{4\times 53} = 2\sqrt{53}




\bf\huge AC = \sqrt{(-2 - 1)^2 + ( - 11 - 5)^2}





\bf\huge AC = \sqrt{(-3)^2 + (- 16)^2}




\bf\huge AC = \sqrt{9 + 256} = \sqrt{265}





\bf\huge Hence \:A , B\: and \:C\: are\: not\: collinear





\bf\huge\boxed{\boxed{\:Regards=\:Yash\:Raj}}}



Similar questions