determine k so dat the equation x2-4x+k=0 has
1.....two real roots
2.....two distinct roots
3.....coincident roots
4.....no real roots.
Answers
Answered by
26
x^2-4x+k=0
D=b^2-4ac=16-4k
Fir,1.)two real roots D>0 or D=0
i.e 16-4k>=0 =>16/4>k
=>k<4 ,k=0or k€(-infinity,4]
For2.) For distinct roots ,D>0.
=>k<4.
For3.)For coincident roots D=0
=>k=4.
4.) For imaginary/no real roots D<0
=>16-4k<0
=>k>4.
Hope it helps
D=b^2-4ac=16-4k
Fir,1.)two real roots D>0 or D=0
i.e 16-4k>=0 =>16/4>k
=>k<4 ,k=0or k€(-infinity,4]
For2.) For distinct roots ,D>0.
=>k<4.
For3.)For coincident roots D=0
=>k=4.
4.) For imaginary/no real roots D<0
=>16-4k<0
=>k>4.
Hope it helps
Answered by
1
Answer:
Step-by-step explanation
D=b2-4ac = (4)2 - 4 *1*k =-4k (1)
(1)Condition for the two real root : D=0(2) and D>0 (3)
substitute (1) in (2) ; -4k = 0 ; k =4
substitute (1) in (3) ; -4k>0; k >4
(2)condition for the two distinct roots : D>0 (4)
substitute (1) in (4) ; -4k >0 = k>4
(3) condition for the coincident roots : D=0(5)
substitute (1) in (5) ; -4k=0 ; k=4
(4) condition for the coincident roots : D<0 (6)
substitute (1) in (6) ;-4k <0 =k<4 .
Hope it will help you all .
THANK YOU
Similar questions