Math, asked by girrajsinh5, 9 months ago

Determine rational numbers a and b.
4+3V5 = a + b 2
4-315​

Answers

Answered by Anonymous
7

Correct Question :-

Determine the rational numbers a and b if ,

 \: \frac{4 + 3 \sqrt{5} }{4 - 3 \sqrt{5} }  = a +  b\sqrt{5}  \\

Solution :-

\longrightarrow \:  \frac{4 + 3 \sqrt{5} }{4 - 3 \sqrt{5} }  = a + b \sqrt{5}  \\

Divide and multiply in the LHS with (4 + 3√5)

\longrightarrow \frac{(4 + 3 \sqrt{5})(4 + 3 \sqrt{5})  }{(4 - 3 \sqrt{5})(4 + 3 \sqrt{5} ) }  = a + b \sqrt{5}  \\  \\ \longrightarrow \frac{( {4 + 3 \sqrt{5} )}^{2} }{( {4)}^{2} - ( {3 \sqrt{5}) }^{2}  }  = a + b \sqrt{5}  \\  \\ \longrightarrow \frac{16 + 45 + 2 \times 4 \times 3 \sqrt{5} }{16 - 45}  = a + b \sqrt{5}  \\  \\ \longrightarrow \frac{61 + 24 \sqrt{5} }{ - 29}  = a + b \sqrt{5}  \\  \\ \longrightarrow \frac{61}{ - 29}   +   \frac{24 \sqrt{5} }{ - 29}  = a + b \sqrt{5}  \\  \\

By Comparing both sizes

\longrightarrow \: a =  -  \frac{61}{29}  \\  \\\longrightarrow b =  -  \frac{24 \sqrt{5} }{29}

Similar questions